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요 약

본 논문은 보상함수 수정을 통해 보다 완벽한 DSA(Dynamic Spectrum Access)를 수행하는 새로운 방법을 제시하였다.

POMDP(Partially Observable Markov Decision Process)는 미래의 스펙트럼 상태를 예측하는데 사용되는 알고리즘으로서, 그 중

보상함수는 스펙트럼을 예측하는데 있어 가장 중요한 부분이다. 그러나 보상함수는 Busy 및 Idle의 두 가지 상태만 갖고 있기 때문

에 채널에서 충돌이 발생하게 되면 보상함수는 Busy를 반환함으로써 2차 사용자의 성능을 감소시키게 된다. 따라서 본 논문에서는

기존의 Busy를 Busy 및 Collision 의 두 상태로 구분하였고, 이렇게 추가된 Collision 상태를 통해 2차 사용자의 채널 접근 기회를

보다 향상시킴으로서 데이터 전송율을 증대시킬 수 있도록 하였다. 또한 본 논문은 새로운 알고리즘의 신뢰도 벡터를 수학적으로

분석하였다. 마지막으로 시뮬레이션 결과를 통해 개선된 보상함수의 성능을 검증하고, 이를 통해 새로운 알고리즘이 CR 네트워크

에서 2차 사용자의 성능을 향상시킬 수 있음을 보인다.

Abstract

In this paper, we present a new method to complete Dynamic Spectrum Access by modifying the reward function. Partially

Observable Markov Decision Process (POMDP) is an eligible algorithm to predict the upcoming spectrum opportunity. In

POMDP, Reward function is the last portion and very important for prediction. However, the Reward function has only two

states (Busy and Idle). When collision happens in the channel, reward function indicates busy state which is responsible for

the throughput decreasing of secondary user. In this paper, we focus the difference between busy and collision state. We have

proposed a new algorithm for reward function that indicates an additional state of collision which brings better communication

opportunity for secondary users. Secondary users properly utilize opportunities to access Primary User channels for efficient

data transmission with the help of the new reward function. We have derived mathematical belief vector of the new algorithm

as well. Simulation results have corroborated the superior performance of improved reward function. The new algorithm has

increased the throughput for secondary user in cognitive radio network.

Keywords : Dynamic Spectrum Access; Partially Observable Markov Decision Process; Reward Function.

Ⅰ. Introduction

The proliferation of a wide range of wireless
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devices has resulted in an overly crowded radio

spectrum. In contrast to this scarcity in spectrum

availability is the pervasive existence of spectrum

opportunities. Dynamic Spectrum Access (DSA) is

one of the approaches envisioned for dynamic

spectrum management in cognitive radio networks
[1～

2]
. The basic idea of DSA is to allow secondary users

to identify and exploit spectrum opportunities under

the constraint that they do not cause harmful

interference to primary users. Most of the existing

works on DSA strategies assume the presence of a
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primary network
[3]
. A basic component of DSA is a

sensing strategy at the MAC layer for spectrum

opportunity tracking. Since the secondary user may

not be able to sense all channels in the spectrum

simultaneously. A sensing strategy for intelligent

channel selection is crucial to track the rapidly

varying spectrum opportunities. By modeling primary

users’ channel occupancy as a Markov Process, the

design of sensing strategies is formulated as a

Partially Observable Markov Decision Processes

(POMDPs)[1, 3]. POMDPs are extensions of Markov

Decision Processes (MDPs) in which the system

states are not completely observable. In POMDPs, a

secondary user interacts with a stochastic

environment at discrete time steps. The secondary

user takes actions and as a result, receives

observations and rewards. The user then has to find

a way of choosing actions, or policy, which

maximizes the total reward received over time.

POMDP method tries to construct a Markovian-state

information using a dynamic scheme and the history

of actions and observations experienced by the user.

This information is called a belief vector. Then

POMDP method uses reward information in order to

associate an action to belief vector
[4]
. For maximizing

the throughput of secondary users while limiting the

probability of collision with primary users, the joint

PHY-MAC design of Opportunistic Spectrum Access

as a constrained POMDP is formulated in [5]. The

decision-theoretic approach integrates the design of

spectrum access protocols at the MAC layer with

spectrum sensing at the physical layer and traffic

statistics determined by the application layer of the

primary network based on the theory of Partially

Observable Markov Decision Process[6].

In communication system, Collision happens when

secondary user senses the channel idle and starts

transmission and primary user returns to the band

before the secondary user finishes its transmission.

The collision happens between the primary user and

secondary user which generated by imperfect sensing

during the sensing period. In collision case, the

reward function of POMDP formulation shows busy.

This busy state may be caused by false alarm or

actual existence of primary user. The false alarm

indicates the idle channel as busy state.

In this paper, we propose a new algorithm by

modifying reward function of POMDP to get better

communication opportunity for secondary users. We

have separated collision from busy state. The

secondary users with the new reward function are

able to detect collided channel using collision state.

The busy state and collision state are not the same

because the causes are different from each other. The

behaviors of imperfect sensing are the false alarm

and miss detection. False alarms result in wasted

spectrum opportunities while miss detections lead to

collisions between users.

There are another differences between collision and

busy state. In collision case neither secondary users

can transmit data while primary user can send data

successfully in busy condition. The proposed reward

function is able to reduce the wasted time and

decrease complexity of the spectrum access. Our

simulation results also show collision does not affect

throughput of the secondary user if collision state

can be detected.

The paper is organized as follows. In section Ⅱ,

the Partially Observable Markov Decision Process

and our algorithm are introduced. The modified

reward function is analyzed in section Ⅲ. In section

Ⅳ, the simulation results are given. Section V

concludes the paper.

Ⅱ. System Model

In this section, we introduce how the collision

happens in a PU (Primary User) network and SU

(Secondary User) network coexistence scenario. The

we introduce the famous POMDP model. Afterwards,

we propose our model specified by a characterized

reward function.

1. Background Introduction
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그림 1. 다중 사용자간 충돌 시나리오

Fig. 1. Scenarios of collision between multi-users.

Figure 1 shows the Scenarios of different condition

cases. In this multi-channel environment, There

happens successful data transmission and failed

transmission (collision) between both primary user

and secondary users. False alarm and miss detection

are shown in this Figure. Collision occurs when

secondary user senses the channel idle and starts

transmission while primary user returns back to the

channel before the secondary user completes its

transmission. A secondary user is not able to know

the belief vector of other secondary user, and then

unexpected collision happens. Here, error sensing is

responsible for collision while secondary user

completely trusts the sensing outcomes in making

access decisions.

In channel 1, the user misses the accessing

opportunity because of false alarm and on the other

hand the collision happens between two secondary

users by detecting busy channel as an idle channel.

The channel 2 has miss detection that creates

collision between primary user and secondary user.

The channel 3 has no sensing error of secondary

users’ detection. This channel is a good accessing

channel. There is no sensing error of secondary

channel that may cause the accessing

miss-opportunity. A collision establishes between two

secondary users because they have different belief

vectors due to their different observation histories. A

secondary user does not know the other secondary

user’s belief vector unless through explicit

cooperation.

The model of Figure 2 shows the network of the

primary users and secondary users. Assume the

그림 2. 우선사용자와 2차 사용자간 채널에 대한 시나

리오

Fig. 2. Scenario of channel between primary user and

secondary user.

spectrum is divided into L independent channels that

are allocated to a time synchronized slot t based

primary network with multiple primary users. In the

secondary network, there are N users; each chooses

one channel to sense at the beginning of each time

slot and transmits if an unused channel exists.

Figure 2 shows the scenario considering two

secondary users (N = 2) contend with each other but

perceive different primary users. Spectrum

opportunities for secondary users (SU1 and SU2) are

determined by primary users (PU1 and PU2).

2. A Constrained POMDP Formulation

From [4～7], we have formulated the opportunistic

channel access sequence as a POMDP represented by

     
       given below.

State Space S The system state is given by the

State Space S of each channel at the beginning of

each slot. The state space is    .

Past observation λ At the beginning of slot t, our

knowledge of the system state based on all past

decisions and observations can be summarized by a

belief vector.

Sensing Action A is the sensing action profile for

all the users that sense at the beginning of each time

slot.

State Transition Probabilities   
is a set of

Markovian state transition probabilities.    

Pr     , denotes the probability of

그림 3. 기존의 POMDP 알고리즘 순서도

Fig. 3. Conventional POMDP algorithm sequence.
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being at state  at time slot   when given that

at time slot t.

Observation Space O is the observation space. For

each user, there are two kinds of observation in a

time slot t: Busy, Idle. “Busy” means the channel is

occupied by the primary user in this slot. So the

secondary user must defer to the next slot. “Idle”

means if the channel is sensed as empty, the

secondary user transmits a packet.

Probability of Observation  represents the

probability that all action A for state s at time slot t

will give observation O, i.e. 

Pr    Reward Function R

represents the reward function mapping from the

observation space O to real numbers.   is the

reward for secondary user N in time slot t defined as

follows:

    i f 
  or

 i f    
(1)

Policies A sensing policy π is a policy to decide

for each secondary user what action to take in each

time slot.

  max









  







 (2)

Where  represents the expectation given policy

π is employed and  is the initial belief vector.

Myopic policy in belief vector which ignores the

impact of the current action on the future reward,

focusing solely at maximizing the immediate reward.

Moreover, a straightforward solution to the channel

selection problem is to employ the greedy policy, i.e.,

the policy of maximizing the expected instantaneous

reward
[7]
. The myopic policy under information state

of channel,    ∈ is given by

  max
  

   . Here,   is the

reward collected under state   when channel

   is selected by the secondary user with

sensing policy().   is the belief vector based on

the access action  under myopic policy. In

general, obtaining the myopic action in each time slot

requires the successive update of the information

state, which explicitly relies on the knowledge of the

state transition probabilities    as well as the

initial condition or belief vector  .

3. Reward Function Characterization Algorithm 

To overcome the unwanted collision, we propose a

new algorithm to detect the collision and maximize

the throughput. We introduced a new variable alpha

 that indicates collision which is used in reward

function. Hence, the expected total reward of the

POMDP represents overall throughput of secondary

user, the expected total number of bits that can be

delivered by the secondary user in T slot.

In Figure 4, at the beginning of data transmission,

the secondary user tries to choose any set of

channels for sensing using all past decisions and

observations to sense. The current state of

underlying Markov process is  ,the secondary user

observes (observation O) which indicates the

availability of each sensed channel. Based on the

observation O, these secondary user chooses a

channel to access. Based on this access action a, the

secondary user gets there reward function R.

  











 i f    
 i f    
 i f     

(3)

In (3), the collision state is not same as the busy

state. There are three observation results in slot t:

Busy, Collision, and Idle. In this paper, we especially

focus on this formulation. “Busy” means the channel

그림 4. 보상함수 특징이 부가된 POMDP 알고리즘

Fig. 4. POMDP algorithm with characterized reward

function.
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is occupied by the primary user in a slot. The

secondary user can choose another channel or wait

for the busy slot to be free
[8]
. “Idle” means the

channel is free and the secondary user can transmit a

packet on it. If a primary user returns back to the

channel that is being used by a secondary user,

collision happens. In the “Collision” state, both of the

primary user and secondary user are unable to

transmit data. If a secondary user finds a channel in

collision state, it should leave for another channel.

To distinguish the busy and collision state, we can

employ the new reward function in the sensor. The

secondary user gets the knowledge about the channel

condition while the secondary user is trying to sense

a chosen channel. When secondary user finds

collision happened, secondary user pause their data

transmission and switch to another channel. Because,

failed communication occurs in collision state. The

channel switching can bring a great advantage to

increase throughput for secondary user. In busy state

user can switch to other channel or wait for the slot

to be free
[8]
. We have separated collision and busy

state in reward function by adding new variable α

that represents collision. We have got 0.5 as a proper

value by testing different α values in the simulation

section.

Ⅲ. Analysis of Reward Function Algorithm

1. Imperfect Sensing

Due to hardware limitations and energy constraints,

a secondary user may not be able to sense all the

channels in the spectrum simultaneously. In this case,

a sensing strategy for intelligent channel selection to

track the rapidly varying spectrum opportunities is

necessary. When sensing error occurs, the state

space and the sensing outcome are not same

≠  . The purpose of the sensing strategy

is two folds: Catch a spectrum opportunity for

immediate access and obtain statistical information on

spectrum occupancy so that more rewarding sensing

decisions can be made in the future. A tradeoff has

to be reached between these two often conflicting

objectives[3]. This collision state happens for miss

detection in sensor. The lost opportunity namely

“busy” is caused by false alarm. The limitations of

MAC layer induce the false alarm and miss detection.

If the secondary user completely trusts the sensing

outcomes in making access decisions, false alarms

result in wasted spectrum opportunities while miss

detections lead to collisions with primary users
[5]
.

2. Reward Function of Proposed Algorithm

We got these three equations based on the reward

function under the policies. These equations are the

combine form of (2) and (3).

Here, 
 denotes the system reward of the policy

π, which is defined as the expected reward or the


 

max
 

  



    
    

  

(4a)


 max

 
  

∞

 
   

 

(4b)


  max

 lim→∞

 

  



·

 
      

(4c)

expected total number of bits that can be delivered

by the secondary user in T slot. Equation (4a)

represents idle channel. This equation has two

rewards with only past observation and decision

histories   . Equation (4b) indicates the reward

function of the busy channel and the last reward

function (4c) indicates the collision case and this

equation has two observations and decisions histories:

the past all observations and decisions    and

other is the instant observation and decision  in

a slot t by which other secondary user can

understand that the slot is occupied. The past

observation histories are the result of the sensing and

the instant observation and decision is for the result

(940)



64 Triple-state 보상 함수를 기반으로 한 개선된 DSA 기법 타사미아 외

of the miss detections. They would stop transmitting

data and search for another channel.

 

3. Mathematical Analysis of Belief Vector

In this section, we have showed mathematically

the difference between busy and collision state. We

have analyzed that the belief vector values of busy

and collision states as well as reward are not the

same. In the busy state, secondary user has zero

reward. In the collision state, the secondary user has

reward that associated the condition of channel. The

authors in [5] used this formula for maximizing the

throughput of secondary users while limiting the

probability of collision with primary users using the

joint MAC-PHY design. At the beginning of each

slot t, a sensing policy specifies a set  of

channels to be sensed based on the current belief

vector  and the sensing outcomes . The

system state based on all past decisions and

observations can be summarized by a belief vector,

    where  is the decision

and observation history in slot t. The reward function

can be accumulated starting from slot t consists of

two parts: the immediate reward  
 

∈


and the maximum expected future reward

    where    that

represent the updated belief vector for slot   after

action and observation acknowledgement
[5]
. The belief

vector value of Figure 3 with the all possible

observation acknowledgement  with maximizing

over all actions A under the myopic policy is

representing as



max
 

∈

∈





Pr    ·





∈
 




(5)

In the idle channel, the number of events is moved

to the queue during the slot T. Since such an event

represents gain of one reward. In the idle channel,

equation (6) is modified form of (5). We get the

belief vector value in the idle channel,

 

max
 

  



   
     

(6)

In the busy channel, the number of events is

moved to the end of the queue. Since such an event

represents gain of zero reward. We get (7) that is

modified form with past observation and decision

history   of (5) in the busy channel. The belief

vector value of secondary user in busy channel,

 

max
 

  

∞

    
     

(7)

Derivation: See Appendix A.

In the collided channel, the number of events is

moved to the slot lim
→∞


 of the queue because the

secondary user does not need to sense that collided

channel again and move to other unused channel.

Since such an event represents gain of valued

reward. In collision state, the failed transmission may

occur, acknowledgements are necessary to ensure the

result of the transmission outcome. It is seemed that

the process has a limiting distribution. As a

consequence, the limit in (8) exists. There have two

observation and decision histories: past observation

and decision history    and instant observation

and decision history  for taking decision to

search the other channel. The belief vector value of

secondary user and we also use  to indicate the

outcome in the collided channel,

 
max
 lim→∞


 

  



   
  (8)

Derivation: See Appendix B.

These three equations (6), (7) and (8) are the belief

vector of (4a), (4b) and (4c) respectively.
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Ⅳ. Simulation

In this section, We have tested our new algorithm

with different collision degrees ( different α values).

we also have compared the performance of traditional

reward function and new reward function by the

throughput of secondary user.

1. α value test

Figure 5 shows the throughput of secondary user

with different α values. We have considered one

independent channel with bandwidth normalized to

one    during 15 seconds. We have regarded

collision  values (0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) of

different reward function with greedy policy.

Figure 5 shows that  with 0.5 has better

throughput than all the other values. It shows that

0.3 and 0.4 alpha values give lower throughput than

that of 0.5 in every second. Though 0.6, 0.7, 0.8 give

better throughput in the initial stage. The collision

happens in 12 second. After 12 th second, 0.5 (alpha

value) offers highest throughput.

2. Throughput comparison of different

   algorithms

In Figure 6, we have considered one independent

channel with bandwidth    in 100 seconds

under greedy policy. In case of traditional reward

function, there are two states in reward function

(Idle=1 and Busy=0) while in case of modified reward

function, the reward function with additional collision

state (Idle=1, Busy=0 and Collision=0.5).

At the beginning of Figure 6, there is no collision

so both curves increase with time. At 10th second, a

collision occurs in the channel. Form this time on the

traditional reward function decreases slowly with

time but the one of modified reward function

increases without being changed. The noticeable point

is at 50th second. From this point on the traditional

reward function is decreasing rapidly while the

modified one is increasing without being changed. In

Figure 6, the traditional reward function cannot detect
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그림 5. α값에 따른 2차 사용자의 성능

Fig. 5. Comparison of different alpha values.
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그림 6. 시간에 따른 2차 사용자의 성능

Fig. 6. Comparison of throughput (bit per slot).

collision so it needs to wait for next slot. The

secondary user is not able to sense the entire

communication channel. So the user has to wait for

vacancy among the sensed channels. This is the

main reason for the throughput decreasing. However,

the secondary user with modified reward function can

detect collision. So the users are looking for other

channel without wasting time by waiting for the next

slot.

V. Conclusion

In this paper, we have analyzed a new reward

function algorithm with additional collision state. This

new reward function algorithm makes it easier for

secondary user to access spectrum in cognitive radio
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network. The algorithm with new reward function

keeps down the complexity of transmission data for

secondary users and also allows identifying and

exploiting spectrum opportunities without any

decrease in throughput. The other secondary user

does not need to wait for the next available slot in

the collided channel. We also show the difference

between busy state and collision state. So we cannot

use one indicator for both busy and collision state.

In future, based on this new reward function, we

also can use (busy, collision) tone when two users

try to contend for the same slot. If one user of them

accesses the channel successfully, the succeeded user

can use busy tone. When collision happens the

collided secondary user use the collision tone, other

secondary users can understand that slot is congested

by secondary users. They will not transmit data and

search for another channel.

Appendix

In this section, we have derive the belief vector in

the Idle, Busy and Collided channel. In appendix A,

we have derived the belief vector of the equation (4a)

and (4b). similarly we have derived the belief vector

of the equation (4c) in appendix B.

Appendix A: Derivation of the belief vector in the 

               idle channel and busy channel

 

At the beginning of the data transmission, the

secondary user tries to choose a set of channels for

sensing using all past decisions and observations to

sense. With the current belief vector and the sensing

outcomes the secondary user observes which

indicates the availability of each sensed channel.

Based on the observation , the secondary user

chooses a channel to access. The system state based

on all past decisions and observations can be

summarized by a belief vector. The belief vector

value   is defined as,



max
 

∈

∈





Pr    ·





∈

 



(9)

Here, the maximum expected future reward

   which represents the updates

belief vector for slot   after action and

observation acknowledgement.

The conditional distribution   
 of the

acknowledgement of all actions can be calculated as

 


∆
      is the conditional

distribution of the acknowledgement given current

state  as well as action  and the reward function

    
∈

  , the channel bandwidth is 

[5]
. Here, 

∈

∈




 is a constant for given belief

vector.

 

max
 

∈

∈


   

 ∈ 
 

 ·


     

(10)

The sensing action a, the expected immediate

reward    may happens based on the all

previous channel observation and decisions as    ,

   

max
 

  



   
     

(11)

In the idle channel, There has valued acknowledge

to ensure the transmitter about the idle channel and

the one unit of reward from the receiver which

represents the success of the data transmission.

 

max
 

  



 
 

(12)

In the busy channel, there has no

acknowledgement and the zero reward represents the

failed transmission happens in the busy channel.
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 

max
 

  

∞

 
 

(13)

Appendix B: Derivation of the belief vector in the 

               collided channel

In the collision state, There have two histories: the

past observation and decision history    and the

instant observation and decision history . The

total observation and decision history is

   ·       . The steady-state value of

belief vector under the myopic policy is defined as


∆
 lim→∞


 
.  is the

expected total reward obtained in      

slots under the myopic policy when initial belief is

. Here,  is determined by the Markov

reward process. The value of belief vector

with the all past decision history in collision state is

defined as,



max
 

  



lim
→∞



·

  

(14)

The sequence of actions  taken at times

    and the initial state  and the

initial observation  for any action 


  



      . An event represents

gain of one reward in collided channel. The reward

accumulated in     period; 


    . Equation (15) represents

the value of belief vector in the collision.

 
max
 lim→∞


 

  



   
  (15)

Here, we get the three equations which will lead to

the optimal solution.
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