Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis

면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축

  • Park, Moon-Kyoo (Division of Molecular and Life Sciences, Hanyang University) ;
  • Jung, Kyoung-Hwa (Division of Molecular and Life Sciences, Hanyang University) ;
  • Kim, Yeon-Hee (Center for Infectious Disease Research, National Institute of Health) ;
  • Rhie, Gi-Eun (Center for Infectious Disease Research, National Institute of Health) ;
  • Chai, Young-Gyu (Division of Molecular and Life Sciences, Hanyang University) ;
  • Yoon, Jang-W. (Department of Microbiology and Research Institute for Translational System Biomics, Chung-Ang University College of Medicine)
  • 박문규 (한양대학교 분자생명과학부) ;
  • 정경화 (한양대학교 분자생명과학부) ;
  • 김연희 (국립보건원 감염병연구센터) ;
  • 이기은 (국립보건원 감염병연구센터) ;
  • 채영규 (한양대학교 분자생명과학부) ;
  • 윤장원 (중앙대학교 의과대학 중개시스템생체학 연구소)
  • Received : 2010.01.11
  • Accepted : 2010.03.08
  • Published : 2010.03.31

Abstract

As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

탄저균(Bacillus anthracis)은 탄저(Antrax)의 원인균으로 사람은 물론, 초식동물인 소, 양, 말 등에서 급성의 폐사성 전염병을 일으킨다. 현재 사용되고 있는 탄저 치료 및 예방법은 항생제 치료와 약독화 백신주를 토대로 하고 있으나, 항생제 내성주의 출현 및 잔류 병원성이 문제시 되고 있는 실정이다. 따라서, 인체에 적용 가능하며 보다 안전한 탄저 치료제 및 백신 개발이 요구되고 있으며, 최근 탄저균 아포 및 영양세포, 그리고 탄저독소(Anthrax toxins)에 대한 동시 면역을 유도하는 다가백신 개발이 보고된 바 있다. 본 연구에서는, 향후 탄저균에 대한 새로운 다가백신 후보물질 발굴을 위하여, 탄저균에 대한 전장 유전자 발현 라이브러리(whole genomic expression library)를 구축하였다. 라이브러리 구축을 위하여, 탄저균(ATCC 14578) 게놈 DNA를 Sau3AI으로 부분 제한효소 처리였고, 유도 발현이 가능한 pET30abc 벡터에 접합시킴으로써, 총 $1{\times}10^5$개에 해당하는 대장균 BL21(DE3) 유래의 전장 유전자 발현 라이브러리를 구축하였다. 염기서열분석을 통한 중복성(redundancy) 확인 결과, 111개의 무작위 클론 중 56개(50.5%)가 탄저균 유전자로 확인되었으며, 17개(15.3%)는 벡터 유전자였고, 38개(34.2%)는 BLAST 탐색에서 일치하는 유전자를 찾지 못하였다. 또한 웨스턴 분석을 통하여 단백질 유도발현을 확인하였으며, 탄저균 항혈청에 대한 colony blot으로부터 양성반응을 보이는 일부 클론들을 확인할 수 있었다. 이러한 결과물들은, 구축된 전장 유전자 발현 라이브러리가 향후 탄저균에 대한 면역체(immunome) 분석을 위해 적용 가능함을 암시한다.

Keywords

References

  1. Akoachere, M., R. Squires, A. Nour, L. Angelov, J. Brojatsch, and E. Abel-Santos. 2007. Identification of an in vivo inhibitor of Bacillus anthracis spore germination. J. Biol. Chem. 282, 12112- 12118. https://doi.org/10.1074/jbc.M611432200
  2. Aulinger, B., M. Roehrl, J. Mekalanos, R. Collier, and J. Wang. 2005. Combining anthrax vaccine and therapy: a dominantnegative inhibitor of anthrax toxin is also a potent and safe immunogen for vaccines. Infect. Immun. 73, 3408-3414. https://doi.org/10.1128/IAI.73.6.3408-3414.2005
  3. Basha, S., P. Rai, V. Poon, A. Saraph, K. Gujraty, M. Go, S. Sadacharan, M. Frost, J. Mogridge, and R. Kane. 2006. Polyvalent inhibitors of anthrax toxin that target host receptors. Proc. Natl. Acad. Sci. USA 103, 13509-13513. https://doi.org/10.1073/pnas.0509870103
  4. Collier, R.J. and J.A. Young. 2003. Anthrax toxin. Annu. Rev. Cell. Dev. Biol. 19, 45-70. https://doi.org/10.1146/annurev.cellbio.19.111301.140655
  5. De Groot, A.S. and J.A. Berzofsky. 2004. From genome to vaccine--new immunoinformatics tools for vaccine design. Methods 34, 425-428. https://doi.org/10.1016/j.ymeth.2004.06.004
  6. Drysdale, M., S. Heninger, J. Hutt, Y. Chen, C. Lyons, and T. Koehler. 2005. Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J. 24, 221-227. https://doi.org/10.1038/sj.emboj.7600495
  7. Friedlander, A. and S. Little. 2009. Advances in the development of next-generation anthrax vaccines. Vaccine 27, 28-32. https://doi.org/10.1016/j.vaccine.2008.10.034
  8. Green, B., L. Battisti, T. Koehler, C. Thorne, and B. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49, 291-297.
  9. Hicks, R., A. Bhattacharjee, B. Koser, and D. Traficantes. 2004. The anthrax protective antigen (PA63) bound conformation of a peptide inhibitor of the binding of lethal factor to PA63: As determined by trNOESY NMR and molecular modeling. J. Med. Chem. 47, 5347-5355. https://doi.org/10.1021/jm040139a
  10. Inglesby, T., D. Henderson, J. Bartlett, M. Ascher, E. Eitzen, A. Friedlander, J. Hauer, J. McDade, M. Osterholm, and T. O'Toole. 1999. Anthrax as a biological weapon: medical and public health management. JAMA 281, 1735-1745. https://doi.org/10.1001/jama.281.18.1735
  11. Jernigan, D., P. Raghunathan, B. Bell, R. Brechner, E. Bresnitz, J. Butler, M. Cetron, M. Cohen, T. Doyle, and M. Fischer. 2002. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg. Infect. Dis. 8, 1019-1028. https://doi.org/10.3201/eid0810.020353
  12. Kudva, I.T., R.W. Griffin, J.M. Garren, S.B. Calderwood, and M. John. 2005. Identification of a protein subset of the anthrax spore immunome in humans immunized with the anthrax vaccine adsorbed preparation. Infect. Immun. 73, 5685-5696. https://doi.org/10.1128/IAI.73.9.5685-5696.2005
  13. Little, S. and G. Knudson. 1986. Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect. Immun. 52, 509-512.
  14. Mikesell, P., B. Ivins, J. Ristroph, and T. Dreier. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371-376.
  15. Moayeri, M. and S.H. Leppla. 2004. The roles of anthrax toxin in pathogenesis. Curr. Opin. Microbiol. 7, 19-24. https://doi.org/10.1016/j.mib.2003.12.001
  16. Mock, M. and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55, 647-671. https://doi.org/10.1146/annurev.micro.55.1.647
  17. Mourez, M. 2004. Anthrax toxins. Rev. Physiol. Biochem. Pharmacol. 152, 135-164.
  18. Rasko, D., M. Altherr, C. Han, and J. Ravel. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29, 303-329.
  19. Rollins, S., A. Peppercorn, J. Young, M. Drysdale, A. Baresch, M. Bikowski, D. Ashford, C. Quinn, M. Handfield, and J. Hillman. 2008. Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PloS one 3, 1824. https://doi.org/10.1371/journal.pone.0001824
  20. Stepanov, A.V., L.I. Marinin, A.P. Pomerantsev, and N.A. Staritsin. 1996. Development of novel vaccines against anthrax in man. J. Biotechnol. 44, 155-160. https://doi.org/10.1016/0168-1656(95)00092-5