Characterization of Bacillus licheniformis B1 ${\beta}$-1,4-Glucanase Overproduced in Escherichia coli

대장균에서 과잉생산된 Bacillus licheniformis B1의 ${\beta}$-1,4-Glucanase 특성

  • Song, Hye-Jung (Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University) ;
  • Kim, Hwang-Yeon (Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University) ;
  • Hwang, Jae-Sung (Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University) ;
  • Kim, Han-Bok (Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University)
  • 송혜정 (호서대학교 자연과학대 생명공학과, 기초과학연구소) ;
  • 김황연 (호서대학교 자연과학대 생명공학과, 기초과학연구소) ;
  • 황재성 (호서대학교 자연과학대 생명공학과, 기초과학연구소) ;
  • 김한복 (호서대학교 자연과학대 생명공학과, 기초과학연구소)
  • Received : 2010.02.02
  • Accepted : 2010.03.04
  • Published : 2010.03.31

Abstract

The ${\beta}$-1,4-glucanase gene of Bacillus licheniformis B1 was expressed in Esherichia coli BL21, and a protein with a mass of 50 kDa that was soluble was overproduced. A protein with a mass of 37 kDa was secreted from B. licheniformis. It seems that the ${\beta}$-1,4-glucanase produced in E. coli contained the leader peptide and unprocessed carboxy-terminal region, but its processing occurred in the carboxyterminal in Bacillus. The optimal temperature of ${\beta}$-1,4-glucanase was $40^{\circ}C$. The enzyme still had 76% maximal activity at $60^{\circ}C$. The optimal pH of the enzyme was 7. The enzyme retained considerable activities over the weak-acidic, neutral, and weak-basic pH range. Acidic fungal cellulases are used in food, detergent, pulp, paper, textile industries. However, studies about neutral and alkaline cellulase are not enough. The cellulase developed in this study may be useful for industrial applications in the fields of biofuel development.

Bacillus licheniformis B1의 ${\beta}$-1,4-glucanase 유전자는 Escherichia coli BL21에서 발현되어, 이로부터 수용성의 50 kDa 단백질이 과량생산되었다. 반면에 B. licheniformis에서는 37 kDa의 형태가 분비되었다. E. coli에서 발현된 ${\beta}$-1,4-glucanase는 leader peptide가 제거되지 않고 포함되어 있고 Bacillus에서는 효소의 carboxy 말단에서 processing이 일어난 것으로 보인다. E. coli에서 생산된 ${\beta}$-1,4-glucanase의 최적온도는 $40^{\circ}C$이었지만, $60^{\circ}C$에서도 최대치의 76% 활성을 유지하였다. 효소의 최적 pH는 7이었고, 효소의 활성은 전체적으로 보면 약산성, 중성 및 약알칼리 영역에 널리 걸쳐 있었다. Cellulase는 식품, 세제, 펄프, 제지, 섬유산업 등 다양한 분야에서 주로 산성의 곰팡이계 효소가 이용되고 있으나, 중성 및 알칼리성 cellulase 연구 및 개발은 미흡한 편이다. 본 연구에서 개발된 중성 cellulase가 바이오 연료 개발 등의 분야에서 활용되기를 기대해 본다.

Keywords

References

  1. Bischoff, K.M., A.P. Booney, X. Li, S. Liu, and S.R. Hughes. 2006. Purification of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 28, 1761-1765. https://doi.org/10.1007/s10529-006-9153-0
  2. Bischoff, K.M., S. Liu, and S.R. Hughes. 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem. 42, 1150-1154. https://doi.org/10.1016/j.procbio.2007.05.001
  3. Carrad, G., A. Koivula, H. Soderlund, and P. Beguin. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 97, 10342- 10347. https://doi.org/10.1073/pnas.160216697
  4. Cavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37, 273-277. https://doi.org/10.1016/S0144-8617(98)00070-8
  5. Christakopoulos, P., D.G. Hatzinikolaou, G. Fountoukidis, D. Kekos, M. Claeyssens, and B.J. Macris. 1999. Purification and mode of action of an alkali-resistant endo-1,4-$\beta$-glucanse from Bacillus pumilus. Arch. Biochem. Biophys. 364, 61-66. https://doi.org/10.1006/abbi.1999.1102
  6. Endo, K., Y. Hakamada, S. Takizawa, H. Kubota, N. Sumitomo, T. Kobayashi, and S. Ito. 2001. A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl. Microbiol. Biotechnol. 57, 109-116. https://doi.org/10.1007/s002530100744
  7. Hakamada, Y., K. Endo, S. Takizawa, T. Kobayashi, T. Shirai, T. Yamane, and S. Ito. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570, 174-180. https://doi.org/10.1016/S0304-4165(02)00194-0
  8. Han, S.J., Y.J. Yoo, and H.S. Kang. 1995. Characterization of a bifunctional cellulase and its structural gene. J. Biol. Chem. 270, 26012-26019. https://doi.org/10.1074/jbc.270.43.26012
  9. Hwang, J.S., S.J. Kim, and H.B. Kim. 2009. Antioxidant and blood-pressure reduction effects of fermented soybean, Chungkookjang. Kor. J. Microbiol. 45, 54-57.
  10. Hwang, J.S., H.J. Yoo, S.J. Kim, and H.B. Kim. 2008. Characterization of $\beta$-1,4-glucanase activity of Bacillus licheniformis B1 in Chungkookjang. Kor. J. Microbiol. 44, 69-73.
  11. Jung, K.H., Y.C. Chun, J.C. Lee, J.H. Kim, and K.H. Yoon. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18, 1077-1082. https://doi.org/10.1007/BF00129735
  12. Kim, J., S. Hur, and J. Hong. 2005. Purification and characterization of an alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27, 313-316. https://doi.org/10.1007/s10529-005-0685-5
  13. Kim, H.B., H.S. Lee, S.J. Kim, H.J. Yoo, J.S. Hwang, G. Chen, and H.J. Youn. 2007. Ethanol extract of fermented soybean, Chungkookjang, inhibits the apoptosis of mouse spleen, and thymus cells. J. Microbiol. 45, 256-261.
  14. Matsui, T., H.Y. Yoo, J.S. Hwnag, D.S. Lee, and H.B. Kim. 2004. Isolation of angiotensin I-converting enzyme inhibitory peptdie from Chungkookjang. Kor. J. Microbiol. 40, 355-358.
  15. Mawadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
  16. Park, J.D., Y.A. Kim, and K. Yoon. 2009. Properties of a Bacillus licheniformis cellulase produced by recombinant Escherichia coli. Kor. J. Microbiol. 45, 257-262.
  17. Robson, L.M. and G.H. Chambliss. 1986. Cloning of the Bacillus subtilis DLG $\beta$-1,4-glucanase gene and its expression in Escherichia coli and B. subtilis. J. Bacteriol. 165, 612-619. https://doi.org/10.1128/jb.165.2.612-619.1986
  18. Robson, L.R. and G.H. Chambliss. 1987. Endo-$\beta$-1,4-glucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169, 2017-2025. https://doi.org/10.1128/jb.169.5.2017-2025.1987
  19. Yoda, K., A. Toyoda, Y. Nakamura, and H. Minato. 2005. Cloning, sequencing, and expression of Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydratebinding modules, and properties of Cel5A. Appl. Environ. Microbiol. 71, 5787-5793. https://doi.org/10.1128/AEM.71.10.5787-5793.2005
  20. Yoo, H.J., J.S. Hwang, and H.B. Kim. 2007. Mass analysis of isoflavones in Chungkookjang. Kor. J. Microbiol. 43, 54-58.
  21. Yoo, H.J., S.H. Lee, D.S. Lee, and H.B. Kim. 2002. Antioxidant activity of fermented barley, wormwood, sea tangle, and soybean. Kor. J. Microbiol. 38, 230-233.