Change of Gene Expression Pattern of Mycobacterium tuberculosis H37Rv Against Host Immune Response in Infected Mouse Lung

결핵균 H37Rv에 감염된 마우스의 폐에서 면역 반응에 대항하는 Mtb 유전자의 발현 변화

  • Lee, Hyo-Ji (Department of Biological Science and Medical & Bio-Materials Research Center, Kangwon National University) ;
  • Cho, Jung-Hyun (Department of Biological Science and Medical & Bio-Materials Research Center, Kangwon National University) ;
  • Kang, Su-Jin (Department of Biological Science and Medical & Bio-Materials Research Center, Kangwon National University) ;
  • Jung, Yu-Jin (Department of Biological Science and Medical & Bio-Materials Research Center, Kangwon National University)
  • 이효지 (강원대학교 생명과학과 및 의료.바이오 신소재 융복합 연구사업단) ;
  • 조정현 (강원대학교 생명과학과 및 의료.바이오 신소재 융복합 연구사업단) ;
  • 강수진 (강원대학교 생명과학과 및 의료.바이오 신소재 융복합 연구사업단) ;
  • 정유진 (강원대학교 생명과학과 및 의료.바이오 신소재 융복합 연구사업단)
  • Received : 2010.01.29
  • Accepted : 2010.04.22
  • Published : 2010.06.30

Abstract

Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens to infect one third of world population. Th1-mediated immunity against Mtb infection is known as critical to express mycobacteriostatic function but it is not sufficient to resolve the infection. In this study, to verify the possibility Mtb itself change the gene expression to survive against host immune response, expression pattern of selected H37Rv genes, 16S rRNA, acr, fbpA, aceA, and ahpC, during the course of infection was measured with absolute quantitation method using real-time RT-PCR. The total number of transcripts of 16S rRNA increased during the course of infection, which was coincide with the increasing CFU. The total number of fbpA transcripts per CFU, which encode typical secreted Mtb antigen, Ag85A, increased for 10 days of infection before decreasing. The number of transcripts of acr per CFU, which encode heat shock protein, ${\alpha}$-crystallin, increased during the infection, and ahpC and aceA, they both are enzymes produced in oxidative stressful condition, increased for 20 days and then slightly decreased on day 30. These findings are one of survival strategy of pathogen evading host immune response lead to persistent infection inside host cells.

전 세계 인구의 1/3을 감염시키고 있는 결핵균은 21세기에도 인류를 위협하는 병원균이다. 결핵균에 대항하는 Th1 면역 반응은 결핵균의 세포 내 성장을 제어하는 것으로 알려져 있으나, 이는 결핵균 감염을 자연 치유하는 수준에는 미치지 못한다. 본 연구에서는 C57BL/6 마우스에 병원성 결핵균인 H37Rv를 감염시켰을 때 숙주의 면역 반응에 대항하여 결핵균이 자신의 유전자 발현을 변화시킨다는 사실을 규명하기 위하여, 결핵균 유전자 중 16S rRNA, acr, fbpA, aceA, ahpC 등의 발현을 real-time RT-PCR을 이용하여 연구하였다. 16S rRNA의 copy number는 감염 후 30일까지 급격하게 증가하였는데 이는 CFU 측정 결과와 일치하고 있다. 결핵균 유전자 중 주된 항원으로 작용하는 유전자인 fbpA의 copy number를 CFU로 나눈 값으로 표현한 발현 양상은 감염 후 10일까지 증가하다가 감소되었다. Heat shock protein인 ${\alpha}$-crystallin을 coding하는 acr은 감염 후 지속적으로 높아졌으나, 산화적 스트레스 환경에서 발현되는 효소들인 ahpC와 aceA의 발현은 감염 후 20일 동안 높아졌다가 30일에는 약간 감소하였으나 비교적 높은 수준을 유지하였다. 이상의 결과는 결핵균이 숙주의 면역 반응이 개시되면 결핵균의 주된 항원 중 하나인 Ag85A를 코딩하는 유전자인 fbpA의 발현 수준을 낮춰 숙주의 Th1 먼역 반응이 낮아지도록 유도한다는 증거로 볼 수 있으며, 면역 반응이 활발해 짐에 따라 큰포식세포 내에서 산화적 스트레스로부터 균을 보호하기 위하여 ahpC와 aceA의 발현이 높아진 것으로 해석된다. 따라서 본 연구는 결핵균이 유전자 발현을 숙주의 면역 반응에 대항하여 스스로 변화시켜 적대적인 숙주 세포 내에서 살아 남을 수 있는 생존 전략을 구사한다는 가능성을 제시한다.

Keywords

References

  1. Beisiegel, M., H.J. Mollenkopf, K. Hahnke, M. Koch, I. Dietrich, S.T. Reece, and S.H. Kaufmann. 2009. Combination of host susceptibility and Mycobacterium tuberculosis virulence define gene expression profile in the host. Eur. J. Immunol. 39, 3369-3384. https://doi.org/10.1002/eji.200939615
  2. Britton, W.J. and U. Palendira. 2003. Improving vaccines against tuberculosis. Immunol. Cell. Biol. 8, 34-45.
  3. Bustin, S.A. 2000. Absolute quantification of mRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169-193. https://doi.org/10.1677/jme.0.0250169
  4. Copenhaver, R.H., E. Sepulveda, L.Y. Armitige, J.K. Actor, A. Wanger, S.J. Norris, R.L. Hunter, and C. Jagannath. 2004. A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. Infect. Immun. 72, 7084-7095. https://doi.org/10.1128/IAI.72.12.7084-7095.2004
  5. Corbett, E.L., C.J. Watt, N. Walker, D. Maher, B.G. Williams, M.C. Raviglione, and C. Dye. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009-1021. https://doi.org/10.1001/archinte.163.9.1009
  6. Delogu, G. and G. Fadda. 2009. The quest for a new vaccine against tuberculosis. J. Infect. Dev. Ctries 3, 5-15.
  7. Fontan, P., V. Aris, S. Ghanny, P. Soteropoulos, and I. Smith. 2008. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect. Immun. 76, 717-725. https://doi.org/10.1128/IAI.00974-07
  8. Huygen, K. 2003. On the use of DNA vaccines for the prophylaxis of mycobacterial diseases. Infect. Immun. 71, 1613-1621. https://doi.org/10.1128/IAI.71.4.1613-1621.2003
  9. Jung, Y.J., R. LaCourse, L. Ryan, and R.J. North. 2002. Evidence inconsistent with a negative influence of T helper 2 cells on protection afforded by a dominant T helper 1 response against Mycobacterium tuberculosis lung infection in mice. Infect. Immun. 70, 6436-6443. https://doi.org/10.1128/IAI.70.11.6436-6443.2002
  10. Jung, Y.J., L. Ryan, R. LaCourse, and R.J. North. 2005. Properties and protective value of the secondary versus primary T helper type 1 response to airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 201, 1915-1924. https://doi.org/10.1084/jem.20050265
  11. Kim, S.Y., B.S. Lee, S.J. Shin, H.J. Kim, and J.K. Park. 2008. Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions. J. Med. Microbiol. 57, 1473-1480. https://doi.org/10.1099/jmm.0.2008/001545-0
  12. Munoz-Elias, E.J., J. Timm, T. Botha, W.T. Chan, J.E. Gomez, and J.D. McKinney. 2005. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun. 73, 546-551. https://doi.org/10.1128/IAI.73.1.546-551.2005
  13. North, R.J. and Y.J. Jung. 2004. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599-623. https://doi.org/10.1146/annurev.immunol.22.012703.104635
  14. Rogerson, B.J., Y.J. Jung, R. LaCourse, L. Ryan, N. Enright, and R.J. North. 2006. Expression levels of Mycobacterium tuberculosis (Mtb) antigen-encoding genes versus production levels of antigenspecific T cells during stationary level lung infection in mice. Immunology 118, 194-201.
  15. Shi, L., Y.J. Jung, S. Tyagi, M.L. Gennaro, and R.J. North. 2003. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl. Acad. Sci. USA 100, 241- 246. https://doi.org/10.1073/pnas.0136863100
  16. Singh, K.K., Y. Dong, S.A. Patibandla, D.N. McMurray, V.K. Arora, and S. Laal. 2005. Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during incipient and clinical tuberculosis. Infect. Immun. 73, 5004-5014. https://doi.org/10.1128/IAI.73.8.5004-5014.2005
  17. Stewart, J.N., H.N. Rivera, R. Karls, F.D. Quinn, J. Roman, and C.A. Rivera-Marrero. 2006. Increased pathology in lungs of mice after infection with an alpha-crystallin mutant of Mycobacterium tuberculosis: Changes in cathepsin proteases and certain cytokines. Microbiology 152, 233-244. https://doi.org/10.1099/mic.0.28275-0
  18. Talaat, A.M., R. Lyons, S.T. Howard, and A. Johnston. 2003. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA 101, 4602-4607.
  19. Voskuil, M.I., D. Schnappinger, K.C. Visconti, M.I. Harrell, G.M. Dolganov, D.R. Sherman, and G.K. Schoolnik. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705-713. https://doi.org/10.1084/jem.20030205
  20. Wayne, L.G. and C.D. Sohaskey. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139-163. https://doi.org/10.1146/annurev.micro.55.1.139
  21. WHO global tuberculosis control, WHO Report 2008, http://www.who.int/tb/publications/global_report
  22. Winslow, G.M., A.D. Roberts, M.A. Blackman, and D.L. Woodland. 2003. Persistence and turnover of antigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. J. Immunol. 170, 2046-2052. https://doi.org/10.4049/jimmunol.170.4.2046