자색비유황세균 Rhodopseudomonas faecalis의 식물생장촉진능

Plant Growth Promotion by Purple Nonsulfur Rhodopseudomonas faecalis Strains

  • 이은선 (강원대학교 자연과학대학 생명과학과) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학과)
  • Lee, Eun-Seon (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 투고 : 2010.01.26
  • 심사 : 2010.03.03
  • 발행 : 2010.06.30

초록

광합성 자색비유황세균으로 동정된 균주들을 논 퇴적토와 분뇨처리장 슬러지로부터 분리하였고 그들의 식물생장촉진능을 조사하였다. 이 균주들의 배양액에서 대표적인 식물호르몬인 indole-3-acetic acid (IAA)와 indole-3-butyric acid (IBA) 및 5'-aminolevulinic acid (ALA)의 생성을 측정하였다. 분리 균주 중 Rhodopseudomonas faecalis D15가 modified Biebl and Pfennig 배지에서 IAA는 769.8 ${\mu}g$/mg protein, IBA는 1323 ${\mu}g$/mg protein 그리고 ALA는 7.4 mM/mg protein의 가장 높은 생성률을 나타내었으며, R. faecalis C9는 20.8 ${\mu}g$/mg protein의 가장 높은 gibberellin 생성률을 나타내었다. 이 균주들을 토양에 파종한 토마토 종자에 접종하고 15일 후에 자라 난 유묘의 뿌리 길이와 건조중량은 비접종 대조군보다 더 컸으며 특히 C9 균주 처리 시료는 건조중량이 대조군에 비해 119.4% 증가하였다. 이 자색비유황세균 분리균주는 식물생장 촉진을 위한 친환경적 생물비료로 사용할 수 있을 것이다.

Photosynthetic purple nonsulfur bacterial strains were isolated from the sediments collected from rice paddy fields and sludges of wastewater treatment plant, and their plant growth promoting capabilities were examined. Most well known phytohormones, auxin such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and 5'-aminolevulinic acid (ALA) were detected by HPLC in the culture broth of these isolates. Among the isolated bacteria, Rhodopseudomonas faecalis D15 showed the highest production rate of 769.8 ${\mu}g$/mg protein of IAA, 1323 ${\mu}g$/mg protein of IBA and 7.4 mM/mg protein of ALA in the modified Biebl and Pfennig's medium. R. faecalis C9 showed the highest production rate of 20.82 ${\mu}g$/mg protein of gibberellin. In consequence, the root length and dry weight of the germinated tomato seedling treated with R. faecalis isolates were longer and heavier than those of uninoculated control after 15 days of incubation in the soil. Especially, the dry weight of germinated tomato seedling increased by 119.4% in C9-treated samples after 15 days. These purple nonsulfur bacteria may be utilized as environment-friendly biofertilizer in the agriculture.

키워드

참고문헌

  1. 권장식, 서장선, 오세종. 2004. 근권미생물의 작물생육촉진 기능해석에 관한 연구: 농촌진흥청 국립농업과학원 토양미생물의 기능평가에 관한 연구 2차년도 보고서.
  2. 이강형, 송홍규. 2007. 근권에서 분리한 Bacillus sp.의 적용에 의한 토마토의 생장 촉진. Kor. J. Microbiol. 43, 279-284.
  3. 천상욱, 국용인, 구자옥. 2004. Tetrapyrrole 의존형 광합성 제초제 $\delta-aminolevulinic$ acid의 미생물학적 생산 및 제초기작. J. Kor. Weed Sci. 24, 161-173.
  4. Archana, A., Ch. Sasikala, Ch. V. Ramana, and K. Arunasri. 2004. "Paraffin wax-overlay of pour plate", a method for the isolation and enumeration of purple non-sulfur bacteria. J. Microbiol. Methods 59, 423-425. https://doi.org/10.1016/j.mimet.2004.08.006
  5. Cho, J.Y., K.C. Nah, and S.J. Chung. 1998. Effects of seed immersion and bacterialization into peat moss compost with culture solution of photosynthetic bacteria on the early growth of tomato plug seedlings. J. Kor. Soc. Hort. Sci. 39, 24-29.
  6. Chon, S.U. 2003. Herbicidal activity of $\delta-aminolevulinic$ acid on several plants as affected by application methods. Kor. J. Crop Sci. 48, 50-58.
  7. Costacurta, A., P. Mazzafera, and Y. Rosato. 1998. Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol. Lett. 159, 215-220. https://doi.org/10.1111/j.1574-6968.1998.tb12863.x
  8. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  9. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793-796.
  10. Gray, E.J. and D.L. Smith. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37, 395-412. https://doi.org/10.1016/j.soilbio.2004.08.030
  11. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22, 109-114. https://doi.org/10.1023/A:1005883930727
  12. Karadeniz, A., S.F. Topcuoglu, and S. Inan. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. https://doi.org/10.1007/s11274-005-4561-1
  13. Kende, H. and J. Zeevaart. 1997. The five "classical" plant hormones. Plant Cell 9, 1197-1210. https://doi.org/10.1105/tpc.9.7.1197
  14. Kim, J.K., B.K. Lee, S.H. Kim, and J.H. Moon. 1999. Characterization of denitrifying photosynthetic bacteria isolated from photosynthetic sludge. Aquacult. Eng. 19. 179-193. https://doi.org/10.1016/S0144-8609(98)00050-8
  15. Koh, R.H. and H.G. Song. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17, 1805-1810.
  16. Lascelles, J. 1956. The synthesis of porphyrine and bacteriochlorophyll by cell suspensions of Rhodopseudomonas sphaeroides. Biochem. J. 62, 78-93. https://doi.org/10.1042/bj0620078
  17. Mauzerall, B.Y.D. and S. Granick. 1955. The occurrence and determination of $\delta-aminolevulinic$ acid and porphobilinogen in urine. J. Biol. Chem. 219, 435-446.
  18. Sasikala, Ch. and ChV. Ramana. 1995a. Biotechnological potentials of anoxygenic phototrophic bacteria. 1. Production of single cell protein, vitamins, ubiquinones, hormones and enzymes and use in waste treatment. Adv. Appl. Microbiol. 41, 173-226. https://doi.org/10.1016/S0065-2164(08)70310-1
  19. Sasikala, Ch. and ChV. Ramana. 1995b. Biotechnological potentials of anoxygenic phototrophic bacteria. 2. Biopolyesters, biopesticide, biofuel and biofertilizer. Adv. Appl. Microbiol. 41, 227-278. https://doi.org/10.1016/S0065-2164(08)70311-3
  20. Sunayana, M.R., Ch. Sasikala, and Ch.V. Ramana. 2005. Rhodestrin: a novel indole terpenoid phytohormone from Rhodobacter sphaeroides. Biotechnol. Lett. 27, 1897-1900. https://doi.org/10.1007/s10529-005-3900-5