식중독균 생육에 대한 Enterococcus faecalis MJ-231의 박테리오신과 소르빈산칼륨의 혼합처리 효과

Synergistic Effect of Combined Treatment of Bacteriocin Produced by Enterococcus faecalis MJ-231 and Potassium Sorbate on Growth of Food-Borne Pathogenic Bacteria

  • 임성미 (동명대학교 식품공학과)
  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
  • 투고 : 2010.02.22
  • 심사 : 2010.03.31
  • 발행 : 2010.06.30

초록

식중독균에 대하여 Enterococcus faecalis MJ-213이 생산하는 박테리오신과 소르빈산칼륨의 혼합처리에 의한 항균효과를 조사하였다. Staphylococcus aureus ATCC 6538에 대한 박테리오신의 MIC는 50 ${\mu}g$/ml, Salmonella enteritidis ATCC 13076에 대한 MIC는 100 ${\mu}g$/ml이었으나, 400 ${\mu}g$/ml의 농도 하에서도 Vibrio parahaemolyticus KCTC 2471의 증식억제 효과는 나타나지 않았다. S. aureus ATCC 6538과 S. enteritidis ATCC 13076 ($10^6$ CFU/ml)에 박테리오신 100 ${\mu}g$/ml 단독 처리 후 24시간 만에 초기 균수가 각각 약 4 log와 2 log cycle 감소되었고, 박테리오신 100 ${\mu}g$/ml와 소르빈산칼륨 100 ${\mu}g$/ml을 혼합 처리한 경우는 박테리오신만을 처리할 때 보다 유의적(p<0.05)으로 더 높은 항균효과가 나타났다. $121^{\circ}C$에서 15분간 가열한 박테리오신 단독처리에 의한 S. aureus과 S. enteritidis의 저해율은 각각 $9.36{\pm}0.58%$$3.71{\pm}0.24%$로 가열처리 하지 않은 박테리오신의 항균력 보다 크게 감소하였다. pH 조정하지 않은 박테리오신 단독 처리에 의한 S. aureus의 저해율($65.61{\pm}0.42%$)은 pH 6.0 혹은 8.0으로 조정한 박테리오신 처리구와 유의적인 차이가 없었으나, 그 외의 pH로 조정한 박테리오신의 항균력은 유의할 만한 수준으로 감소되었다. 박테리오신 활성은 ${\alpha}$-amylase와 lipase 처리에 영향을 받지 않았으나, protease II와 pepsin 처리에 의해선 활성이 거의 소실되었다. 또한 갈은 쇠고기 내에 접종된 S. aureus와 S. enteritidis의 균수도 박테리오신 단독처리시보다 소르빈산칼륨과 혼합처리에 의해 $4^{\circ}C$에서 저장하는 동안 유의적(p<0.05)으로 더 낮은 균수를 유지하였다.

The alone and combined effects of bacteriocin produced from Enterococcus faecalis MJ-213 and potassium sorbate against the food-borne pathogenic bacteria were studied. Bacteriocin minimal inhibitory concentration (MIC) values for Staphylococcus aureus ATCC 6538 and Salmonella enteritidis ATCC 13076 were 50 and 100 ${\mu}g$/ml, respectively. Bacteriocin (100 ${\mu}g$/ml) alone was active against S. aureus and S. enteritidis, but it was lower in antimicrobial effectiveness than the combination of bacteriocin (100 ${\mu}g$/ml) with potassium sorbate (100 ${\mu}g$/ml), which reduced initial counts (6 log cycle) of S. aureus and S. enteritidis by 1 and 3 log cycle, respectively. The bactericidal activity of bacteriocin of E. faecalis MJ-213 heated at $100^{\circ}C$ for 30 min or $121^{\circ}C$ for 15 min was markedly decreased as compared with the control. Moreover, the activity of bacteriocin was completely abolished by pepsin or protease II, but not affected by ${\alpha}$-amylase or lipase. The activity of bacteriocin adjusted to pH 6.0-8.0 showed almost the same inhibition ratio compared with the bacteriocin unadjusted pH, and though the inhibition ratio against pathogenic bacteria was reduced than the control, the bacteriocin was stable at pH 4.0 or 10.0, relatively. Furthermore, the combined treatment of bacteriocin and potassium sorbate than the alone treatment of bacteriocin significantly decreased (p<0.05) the viable cell counts of S. aureus or S. enteritidis inoculated on grind beef during storage at $4^{\circ}C$.

키워드

참고문헌

  1. Aasen, I.M., S. markussen, T. Moretro, T. Katla, L. Axelsson, and K. Naterstad. 2003. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int. J. Food Microbiol. 87, 35-43. https://doi.org/10.1016/S0168-1605(03)00047-3
  2. Ahmad, C., C. Natascha, C. Haiqin, Z. Jianxin, T. Jian, Z. Hao, and C. Wei. 2010. Bifidin I-A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21, 746-753. https://doi.org/10.1016/j.foodcont.2009.11.003
  3. Ananou, S., A. Banos, M. Maqueda, M. Martinez-Bueno, A. Galvez, and E. Valdivia. 2010. Effect of combined physicochemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21, 478-486. https://doi.org/10.1016/j.foodcont.2009.07.010
  4. Anthony, T., T. Rajesh, N. Kayalvizhi, and P. Gunasekaran. 2009. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Biores. Technol. 100, 872-877. https://doi.org/10.1016/j.biortech.2008.07.027
  5. Chawla, S.P., R. Chander, and A. Sharma. 2006. Safe and shelfstable natural casing using hurdle technology. Food Control 17, 127-131. https://doi.org/10.1016/j.foodcont.2004.09.011
  6. Cleveland, J., T.J. Montville, I.F. Nes, and M.L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  7. Davies, E.A., C.F. Milne, H.E. Bevis, R.W. Potter, J.M. Harris, G.C. Williams, L.V. Thomas, and J. Delves-Broughton. 1999. Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed Bologna-type sausage. J. Food Prot. 62, 1004-1010. https://doi.org/10.4315/0362-028X-62.9.1004
  8. Ferrand, C., F. Marc, P. Fritsch, P. Cassand, and G.D. Blanquat. 2000. Mutagenicity and genotoxicity of sorbic acid-amine reaction products. Food Addit. Contam. 17, 895-901. https://doi.org/10.1080/026520300750038063
  9. Fyfe, L., F. Armstrong, and J. Stewart. 1998. Inhibition of Listeria monocytogenes and Salmonella enteritidis by combinations of plant oils and derivatives of benzoic acid: the development of synergistic antimicrobial combinations. Int. J. Antimicrob. Agents 9, 195-199. https://doi.org/10.1016/S0924-8579(97)00051-4
  10. Garcia, M.T., M.M. Canamero, R. Lucas, N.B. Omar, R.P. Pulido, and A. Galvez. 2004. Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int. J. Food Microbiol. 90, 161-170. https://doi.org/10.1016/S0168-1605(03)00051-5
  11. Gomes, B.C., C.T. Esteves, I.C.V. Palazzo, A.L.C. Darini, G.E. Felis, L.A. Sechi, B.D.G.M. Franco, and E.C.P. De Martinis. 2008. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol. 25, 668-675. https://doi.org/10.1016/j.fm.2008.03.008
  12. Grande, M.J., R. Lucas, H. Abriouel, E. Valdivia, N.B. Omar, M. Maqueda, M. martinez-Bueno, M. Martinez-Canamero, and A. Galvez. 2006. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int. J. Food Microbiol. 106, 185-194. https://doi.org/10.1016/j.ijfoodmicro.2005.08.003
  13. Herranz, C., P. Casaus, S. Mukhopadhyay, J.M. Martinez, J.M. Rodriguez, I.F. Nes, P.E. Hernandez, and L.M. Cintas. 2001. Enterococcus faecium P21: a strain occurring naturally in dryfermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol. 18, 115-131. https://doi.org/10.1006/fmic.2000.0382
  14. Hurst, A. 1981. Nisin. Adv. Appl. Microbiol., 27, 85-123. https://doi.org/10.1016/S0065-2164(08)70342-3
  15. Jo, S.H., H.J. Kim, E.J. Choi, and S.D. Ha. 2009. Trends analysis of food-borne outbreaks in United States of America, Japan and Korea. Safe Food 4, 3-14.
  16. Jo, S.B., Y.U. Lee, and J.H. Kim. 1998. A study on synergistic effect of chitosan and sorbic acid on growth inhibition of Escherichia coli O157:H7 and Staphylococcus aureus. J. Food. Hyg. Safety 13, 112-120.
  17. Kang, J.H. and M.S. Lee. 2005. Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J. Appl. Microbiol. 98, 1168-1176.
  18. Kleter, G.A. and H.J.P. Marvin. 2009. Indicators of emerging hazards and risks to food safety. Food Chem. Toxicol. 47, 1022-1039. https://doi.org/10.1016/j.fct.2008.07.028
  19. Ku, J.Y., S.J. Choi, S.Y. Kim, and B.S. Noh. 2000. Inactivation of ascorbate oxidase by hurdle technology with heat, pH and ultrasound. Food Sci. Biotechnol. 9, 372-377.
  20. Lazdunski, C.J. 1988. Pore-forming colicins: synthesis, extracellular release, mode of action, immunity. Biochimie 70, 1291-1296. https://doi.org/10.1016/0300-9084(88)90197-6
  21. Lee, N.K., J.Y. Lee, H.G. Kwak, and H.D. Paik. 2008. Perspectives for the industrial use of bacteriocin in dairy and meat industry. Kor. J. Food Sci. Ani. Resour. 28, 1-8. https://doi.org/10.5851/kosfa.2008.28.1.1
  22. Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181-186. https://doi.org/10.1016/S0168-1605(00)00161-6
  23. Lim, S.M. 2005. Synergistic effect of physico-chemical treatment and bacteriocin produced by Enterococcus faecium MJ-14. J. Food Hyg. Safety 20, 217-224.
  24. Lim, S.M. 2009. Combined effects of bacteriocin of Enterococcus faecalis MJ-213 and organic acid on Listeria monocytogenes inactivation. Kor. J. Microbiol. 45, 41-47.
  25. Lim, K. and A. Mustapha. 2004. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. J. Food Prot. 67, 310-315. https://doi.org/10.4315/0362-028X-67.2.310
  26. Lucas, R., M.J. Grande, H. Abriouel, M. Maqueda, N.B. Omar, E. Valdivia, M. Martinez-Canamero, and A. Galvez. 2006. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem. Toxicol. 44, 1774-1781. https://doi.org/10.1016/j.fct.2006.05.019
  27. Martinez-Bueno, M., A. Galvez, E. Valdivia, and M. Maqueda. 1990. A transferable plasmid associated with AS-48 production in Enteococcus faecalis. J. Bacteriol. 172, 2817-2818. https://doi.org/10.1128/jb.172.5.2817-2818.1990
  28. McCabe-Sellers, B.J. and S.E. Beattle. 2004. Food safety: emerging trends in foodborne illness surveillance and prevention. J. Am. Diet Assoc. 104, 1708-1717. https://doi.org/10.1016/j.jada.2004.08.028
  29. Mead, P.S., L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, and C. Shapiro. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607-625. https://doi.org/10.3201/eid0505.990502
  30. Meng, J. and M.P. Doyle. 2002. Introduction. Microbiological food safety. Microb. Infect. 4, 395-397. https://doi.org/10.1016/S1286-4579(02)01552-6
  31. Molinos, A.C., H. Abriouel, R.L. Lopez, N.B. Omar, E. Valdivia, and A. Galvez. 2009. Enhanced bactericidial activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 47, 2216-2223. https://doi.org/10.1016/j.fct.2009.06.012
  32. Moon, G.S., J.J. Jeong, G.E. Ji, J.S. Kim, and J.H. Kim. 2000. Chacracterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10, 507-513.
  33. Munoz, A., S. Ananou, A. Galvez, M. Martinez-Bueno, A. Rodriguez, M. Maqueda, and E. Valdivia. 2007. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synerigism with heat. Int. Dairy J. 17, 760-769. https://doi.org/10.1016/j.idairyj.2006.09.006
  34. Papastathopoulou, A., E. Bezirtzoglou, and N.J. Legakis. 1997. Bacterioides fragilis: production and sensitivity to bacteriocins. Anaerobe 3, 203-206. https://doi.org/10.1006/anae.1997.0106
  35. Park, S.H., K. Itoh, and T. Fujisawa. 2003. Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804. J. Appl. Microbiol. 95, 294-300. https://doi.org/10.1046/j.1365-2672.2003.01975.x
  36. Piper, C., L.A. Draper, P.D. Cotter, R.P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother. 64, 546-551. https://doi.org/10.1093/jac/dkp221
  37. Samelis, J., G.K. Bedie, J.N. Sofos, K.E. Belk, J.A. Scanga, and G.C. Smith. 2005. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at $4{^{\circ}C}$ in vacuum packages. Lebensm. Wiss. Technol. 38, 21-28. https://doi.org/10.1016/j.lwt.2004.04.012
  38. Theppangna, W., T. Murase, N. Tokumaru, H. Chikumi, E. Shimizu, and K. Otsuki. 2007. Screening of the enterocin genes and antimicrobial activity against pathogenic bacteria in Enterococcus strains obtained from different origins. J. Vet. Med. Sci. 69, 1235-1239. https://doi.org/10.1292/jvms.69.1235
  39. Valenzuela, A.S., N. Omar, H. Abriouel, R.L. Lopez, K. Veljovic, M.M. Canamero, M.K.L. Topisirovic, and A. Galvez. 2009. Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20, 381-385. https://doi.org/10.1016/j.foodcont.2008.06.004
  40. Van der Merwe, I.R., R. Bauer, T.J. Britz, and L.M.T. Dicks. 2004. Characterization of thoeniicin 447, a bacteriocin isolated from Propionibacterium thoenii strain 447. Int. J. Food Microbiol. 92, 153-160. https://doi.org/10.1016/j.ijfoodmicro.2003.09.004
  41. Vanne, L., M. Karwoski, S. karppinen, and A.M. Sjoberg. 1996. HACCP-based food quality control and rapid detection methods for microorganisms. Food Control 7, 263-276. https://doi.org/10.1016/S0956-7135(96)00064-3
  42. Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds: a review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 7, 717-768. https://doi.org/10.1080/02652039009373938
  43. Yoon, M.Y., Y.J. Kim, and H.J. Hwang. 2008. Properties and safety aspects of Enterococcus faecium strains isolated from Chungkukjang, a fermenated soy product. LWT. 41, 925-933. https://doi.org/10.1016/j.lwt.2007.05.024
  44. Zapico, P., M. de Paz, M. Medina, and M. Nunez. 1999. The effect of homogenization of whole milk, skim milk and milk fat on nisin activity against Listeria innocua. Int. J. Food Microbiol. 46, 151-157. https://doi.org/10.1016/S0168-1605(98)00190-1