RraB의 발현에 따른 대장균의 성장 저해의 원인 규명

Implications of Growth Arrest Induced by Overproduction of RraB in Escherichia coli

  • 류상미 (중앙대학교 자연과학대학 생명과학과) ;
  • 염지현 (중앙대학교 자연과학대학 생명과학과) ;
  • 고하영 (중앙대학교 자연과학대학 생명과학과) ;
  • 신은경 (중앙대학교 자연과학대학 생명과학과) ;
  • 이강석 (중앙대학교 자연과학대학 생명과학과)
  • 투고 : 2010.05.13
  • 심사 : 2010.05.27
  • 발행 : 2010.06.30

초록

RNase E는 대장균 내에 있는 수많은 RNA의 분해와 가공에 관여하며, 또한 RNA 대사 작용에 관련된 거대한 단백질 복합체인 데그라도좀을 구성하는 중요한 효소로 알려져 있다. RraA와 RraB는 최근에 밝혀진 RNase E의 단백질 저해제이며, 진화적으로 잘 보존되어 있다. 이 연구에서는 RraA를 발현 시킬 때와는 달리 세포 내에서 RraB를 발현 시키면, RNase E의 과발현에 따른 세포의 성장 저해를 회복시키지 못하고 더 저해하는 것을 확인하였다. 이 현상이 RraA와 RraB가 세포내 RNase E의 기질들에 대해 특이적으로 영향을 미치기 때문인지를 알아보기 위해 세 개의 RNase E 기질을 분석하였다. 그 결과, ColE1-타입 플라스미드의 복제수를 조절하는 RNA I과 라이보좀 단백질 S15를 코딩하는 rpsO mRNA의 경우 RraA가 RraB 보다 효과적으로 RNase E의 활성을 저해하며, RNase P의 RNA 구성요소의 전구체인 pM1 RNA에 대한 RNase E의 효소 활성은 RraB가 저해하지 못하는 것을 관찰하였다. 이 결과는 RraB가 RraA보다는 높은 기질 특이적으로 RNase E의 효소활성을 저해하며, 이러한 이유로 RNase E의 과발현에 의한 세포의 성장 저해를 RraB의 과발현으로 극복할 수 없었다고 추론할 수 있다.

RNase E plays a major role in the degradation and processing of a large number of RNA transcripts in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. RraA and RraB are recently discovered protein inhibitors of RNase E and are evolutionarily conserved. In this study, we observed that, unlike RraA, overexpression of RraB did not rescue growth arrest of E. coli cells overexpressing RNase E. To examine whether this phenomenon stems from differential inhibitory effects of RraA and RraB on RNase E substrates, we analyzed three in vivo RNase E substrates. The results showed that RraA inhibited RNase E activity more efficiently than RraB on the degradation of RNA I, which controls the copy number of ColE1-type plasmid, and rpsO mRNA encoding ribosomal protein S15, while RraB was unable to inhibit the processing of pM1 RNA, a precursor of the RNA component of RNase P, by RNase E. Our results imply that RraB inhibits RNase E activity in a more substrate-dependent manner than RraA and this property of RraB may explain why overexpression of RraB could not rescue cells overexpressing RNase E from growth arrest.

키워드

참고문헌

  1. Carpousis, A.J. 2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61, 71-87. https://doi.org/10.1146/annurev.micro.61.080706.093440
  2. Claverie-martin, F., M.R. Diaz-torres, S.D. Yancey, and S.R. Kushner. 1991. Analysis of the altered mRNA stability (ams) gene from Escherichia coli. J. Biol. Chem. 266, 2843-2851.
  3. Gao, J., K. Lee, M. Zhao, J. Qiu, X. Zhan, A. Saxena, C.J. Moore, S.N. Cohen, and G. Georgiou. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61, 394-406. https://doi.org/10.1111/j.1365-2958.2006.05246.x
  4. Hajnsdorf, E., F. Braun, J. Haugel-Nielsen, J. Le Derout, and P. Regnier. 1996. Multiple degradation pathways of the rpsO mRNA of Escherichia coli RNase E interacts with the 5′ and 3′ extremities of the primary transcript. Biochimie 78, 416-424. https://doi.org/10.1016/0300-9084(96)84748-1
  5. Jain, C. and J.G. Belasco. 1995. Autoregulation of RNase E synthesis in Escherichia coli. Nucleic Acids Symp. Ser. 33, 85-88.
  6. Jain, C., A. Deana, and J.G. Belasco. 2002. Consequences of RNase E scarcity in Escherichia coli. Mol. Microbiol. 43, 1053-1064. https://doi.org/10.1046/j.1365-2958.2002.02808.x
  7. Jiang, X. and J.G. Belasco. 2004. Catalytic activation of multimeric RNase E and RNase G by 5′ monophophorylated RNA. Proc. Natl. Acad. Sci. USA 101, 9211-9216. https://doi.org/10.1073/pnas.0401382101
  8. Lee, K., J.A. Bernstein, and S.N. Cohen. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43, 1445-1456. https://doi.org/10.1046/j.1365-2958.2002.02848.x
  9. Lee, K., X. Zhan, J. Gao, J. Qiu, Y. Feng, R. Meganathan, S.N. Cohen, and G. Georgiou. 2003. RraA: A protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114, 623-634. https://doi.org/10.1016/j.cell.2003.08.003
  10. Lin-Chao, S., T.T. Wong, K.J. McDowall, and S.N. Cohen. 1994. Effects of nucleotide sequence on the specificity of rne-dependent and RNase E-mediated cleavages of RNA I encoded by the pBR322 plasmid. J. Biol. Chem. 269, 10797-10803.
  11. McDowall, K.J. and S.N. Cohen. 1996. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J. Mol. Biol. 255, 349-355. https://doi.org/10.1006/jmbi.1996.0027
  12. Mudd, E.A. and C.F. Higgins. 1993. Escherichia coli endoribonuclease RNase E: Autoregulation of expression and sitespecific cleavage of mRNA. Mol. Microbiol. 9, 557-568. https://doi.org/10.1111/j.1365-2958.1993.tb01716.x
  13. Reed, R.E., M.F. Baer, C. Guerrier-Takada, H. Donis-Keller, and S. Altman. 1982. Nucleotide sequence of the gene encoding the RNA subunit (M1 RNA) of ribonuclease P from Escherichia coli. Cell 30, 627-636. https://doi.org/10.1016/0092-8674(82)90259-8
  14. Steege, D.A. 2000. Emerging features of mRNA decay in bacteria. RNA 6, 1079-1090. https://doi.org/10.1017/S1355838200001023
  15. Taraseviciene, L., G.G. Bjork, and B.E. Uhlin. 1995. Evidence for an RNA binding region in the Escherichia coli processing endoribonuclease RNase E. J. Biol. Chem. 270, 26391-26398. https://doi.org/10.1074/jbc.270.44.26391
  16. Yeom, J.H., H. Go, E. Shin, H.L. Kim, S.H. Han, C.J. Moore, J. Bae, and K. Lee. 2008. Inhibitory effects of RraA and RraB on RNase E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. FEMS Microbiol. Lett. 285, 10-15. https://doi.org/10.1111/j.1574-6968.2008.01205.x
  17. Yeom, J.H. and K. Lee. 2006. RraA rescues Escherichia coli cells overproducing RNase E from growth arrest by modulating the ribonucleolytic activity. Biochem. Biophys. Res. Commun. 345, 1372-1376. https://doi.org/10.1016/j.bbrc.2006.05.018
  18. Yeom, J.H., E. Shin, H. Go, S.H. Sim, and K. Lee. 2008. Functional implications of the conserved action of regulators of ribonuclease activity. J. Microbiol. Biotechnol. 18, 1353-1356.