Isolation and Phylogenetic Characteristics of Exopolysaccharide Producing Bacteria in a Rhizosphere Soil of Medicinal Herbs

약초 근권토양 내 다당 생성세균 분리 및 계통학적 특성

  • Lee, Hae-Ran (Department of Microbial & Nano Materials, Mokwon University) ;
  • Kim, Ki-Kwhang (Department of Microbial & Nano Materials, Mokwon University) ;
  • Whang, Kyung-Sook (Department of Microbial & Nano Materials, Mokwon University)
  • 이혜란 (목원대학교 미생물나노소재학과) ;
  • 김기광 (목원대학교 미생물나노소재학과) ;
  • 황경숙 (목원대학교 미생물나노소재학과)
  • Received : 2010.08.06
  • Accepted : 2010.09.16
  • Published : 2010.09.30

Abstract

We examined the distribution of exopolysaccharide (EPS) producing bacteria population in rhizosphere soils of domestic medicinal herbs; Angelica sinensis, Atractytodes japonica, Achyranthes japonica, Anemarrhena asphodeloides, and Astragalus membranaceus. Fifty-six percent of the total isolates from rhizosphere soil of Angelica sinensis were EPS producing bacteria, suggesting the dominance of EPS producing bacteria in rhizosphere soil of Angelica sinensis. EPS producing bacteria were enumerated in root system (rhizosphere soil, rhizoplane, inside of root) of Angelica sinensis. Bacterial density of rhizosphere soil, rhizoplane, and inside of root were distributed $9.0{\times}10^6CFU/g{\cdot}soil$, $7.0{\times}10^6CFU/g{\cdot}soil$, and $1.4{\times}10^3CFU/g{\cdot}soil$, respectively. EPS producing bacteria from rhizosphere soil were categorized into five major phylogenetic groups: Alphaproteobacteria (4 strains), Betaproteobacteria (6 strains), Firmicutes (2 strains), Actinobacteria (3 strains), and Bacteroidetes (1 strain) subdivisions. Also, the EPS producing isolates from rhizoplane were distributed as 7 strains in Alphaproteobacteria, 3 strains in Betaproteobacteria, 2 strains in Actinobacteria, 3 strains in Bacteroidetes, and 1 strain in Acidobacteria subdivisions. All of the EPS producing bacteria inside of root belong to genus Chitinophaga. Burkholderia caribiensis DR14, Terriglobus sp. DRP35, and Rhizobium hainanense SAP110 were selected in 112 EPS producing bacteria. These appeared to have produced high levels of exopolysaccharide 6,555 mpa.s, 3,275 mpa.s, and 1,873 mpa.s, respectively. The purified EPS was analyzed Bio-LC. As neutral sugars, glucose, galactose, mannose were detected and as amino sugars, galactosamine and glucosamine were detected. Especilally, analysis of Bio-LC showed that Rhizobium hainanense SAP110 produced glucose (60~89%) and glucosamine (8.5%) as major neutral sugar and amino sugar, respectively.

국내에 자생하는 당귀, 삽주, 쇠무릎, 지모, 황기의 근권토양내 EPS 생성균주의 분포율을 조사한 결과 당귀로부터 분리된 균주의 56%가 EPS 생성 균주로 가장 높은 분포율을 나타내었다. 또한, 당귀 근계 (근권, 근면, 근 내부) 내 EPS 생성 세균의 밀도를 측정한 결과, 근권 토양 내에는 $9.0{\times}10^6$ CFU/$g{\cdot}soil$, 근면에는 $7.0{\times}10^6$ CFU/$g{\cdot}soil$, 그리고, 근 내부에는 $1.4{\times}10^3$ CFU/$g{\cdot}soil$로 확인되어, 다수의 EPS 생성 세균이 분포하고 있음이 확인되었다. 당귀 근권으로부터 분리된 EPS 생성세균은 Alphaproteobacteria (4 strains), Betaproteobacteria (6 strains), Firmicutes (2 strains), Actinobacteria (3 strains), 그리고 Bacteroidetes (1 strain) 계통군에 속하는 균주였다. 근면으로 부터 분리된 EPS 생성세균은 Alphaproteobacteria (7 strains), Betaproteobacteria (3 strains), Actinobacteria (2 strains), Bacteroidetes (3 strains), 그리고 Acidobacteria (1 strain) 계통군으로 나타났으며, 근 내부에서 분리된 EPS 생성세균은 모두 Bacteroidetes 계통군 Chitinophaga에 속하는 특징을 나타내었다. 약초 근권토양으로부터 분리된 EPS 생성세균 112균주중에서 Burkholderia caribiensis DR14 (1,547 mpa.s), Terriglobus sp. DRP35균주(2,136 mpa.s), Rhizobium hainanense SAP110균주(1,680 mpa.s)를 최우수 EPS 생성 균주로 선발하였다. 분리 정제된 EPS를 Bio-LC로 분석한 결과 glucose, galactose, mannose의 중성당과, galactosamine, glucosamine의 아미노당이 나타났다. 특히 Rhizobium hainanense SAP110 균주는 주요 중성당으로 glucose (60-89%)를 그리고 주요 아미노당으로 glucosamine (8.5%)을 생성하는 특징을 나타내었다.

Keywords

References

  1. Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393-3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
  2. Amellal, N., G. Burtin, F. Bartoli, and T. Heulin. 1998. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 64, 3740-3747.
  3. Atlas, R.M. and R. Bartha. 1998. Interactions between microorganisms and plants. 99-140. Microbial. Ecology. 4th. Benjamin- Cummings Publishing Company, USA.
  4. De Vuyst, L. and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153-177. https://doi.org/10.1111/j.1574-6976.1999.tb00395.x
  5. Diaz, K., C. Valiente, M. Martinez, M. Castillo, and E. Sanfuentes. 2009. Root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J. Microbiol. Biotechnol. 25, 867-873. https://doi.org/10.1007/s11274-009-9961-1
  6. Goubet, F., P. Jackson, M.J. Deery, and P. Dupree. 2002. Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharide and polysaccharide hydrolyses. Anal. Biochem. 300, 54-68.
  7. Han, J., D. Xia, L. Li, L. Sun, K. Yang, and L. Zhang. 2009. Diversity of culturable bacteria isolated from root domains of moso Bamboo (Phyllostachys edulis). Microb. Ecol. 58, 363-373. https://doi.org/10.1007/s00248-009-9491-2
  8. Jesus, C.M., M.A. Lourdes, P.V. Guadalupe, and E.D. Paulina. 2004. Budkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54, 1165-1172. https://doi.org/10.1099/ijs.0.02951-0
  9. Ji, P., M. Wilson, H.L. Campbell, and J.W. Kloepper. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato. pp. 273-276. In A. Ogoshi, K. Kobauashi, Y. Homma, F. Kodama, N. Kondo, and S, Akino (eds.), plant growth-promoting Rhizobacteria: present status and future prospects. Nakanishi printing, Sapporo, Japan.
  10. Kacia, Y., A. Heyraudb, M. Barakatc, and T. HeulinKaci. 2005. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 156, 522-531. https://doi.org/10.1016/j.resmic.2005.01.012
  11. Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteia for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  12. Kim, H.J. and H.C. Jang. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor. J. Microbiol. Biotechnol. 34, 196-203.
  13. Koo, S.Y. and K.S. Cho. 2006. Interactions between plants rhizobacteria in phytoremediation of heavy metal contaminated soil. Kor. J. Microbiol. Biotechnol. 34, 83-93. https://doi.org/10.1007/s10295-006-0168-2
  14. Laws, A.P., M.J. Chadha, M. Chacon-Romero, V.M. Marshall, and M. Maqsood. 2008. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydr. Res. 343, 301-307. https://doi.org/10.1016/j.carres.2007.10.028
  15. Lim, Y.S. and S.K. Lee. 2009. Characteristics of exopolysaccharide produced in goat milk yogurt cultured with Streptococcus thermophilus LFG isolated from kefir. Kor. J. Food. Sci. Ani. Resour. 29, 143-150. https://doi.org/10.5851/kosfa.2009.29.2.143
  16. Lucy, M., E. Reed, and B.R. Glinck. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek. 86, 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  17. Margaritis, A. and G.W. Pace. 1985. Microbial polysaccharides, 1005-1044. In H.W. Blanch, S. Drew, and D.I.C. Wang (eds.). Comprehensive biotechnology. 3. Pergamon Press. Oxford, USA.
  18. Mendrygal, K.E. and J.E. Gonzalez. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182, 599-606. https://doi.org/10.1128/JB.182.3.599-606.2000
  19. Mozzi, F., F. Vaningelgem, E.M. Hebert, R.V. der Meulen, M.R.F. Moreno, G.F. de Valdez, and L. De Vuyst. 2006. Diversity of heteropolysaccharide producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72, 4431-4435. https://doi.org/10.1128/AEM.02780-05
  20. Muleta, D., F. Assefa, K. Hjort, S. Roos, and U. Granhall. 2009. Characterization of rhizobacteria isolated from wild coffee arabica L. Eng. Life Sci. 9, 100-108. https://doi.org/10.1002/elsc.200700031
  21. Park, D.H., M.J. Kim, H.N. Seo, T.S. Hwang, and S.H. Lee. 2008. Characterization of exopolysaccharide (EPS) produced by Weissella hellenica SKKimchi3 isolated from kimchi. Kor. J. Microbiol. 46, 535-541. https://doi.org/10.1007/s12275-008-0134-y
  22. Park, K.S., J.W. Klopper, and C.M. Ryu. 2008. Rhizobacterial exopolysaccharide elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18, 1095-1100.
  23. Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  24. Park, Y.I. 2000. Structures and functions of microbial extracellular or wall polysaccharides in the physiology of producer organisms. The Microorganisms and Industry 26, 18-30.
  25. Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12, 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1
  26. Saitou, N. and N. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  27. Santaella, C., M. Schue, O. Berge, T. Heulin, and W. Achouak. 2008. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10, 2150-2163. https://doi.org/10.1111/j.1462-2920.2008.01650.x
  28. Serrato, R.V., G.L. Sassaki, P.A.J. Gorin, L.M. Cruz, F.O. Pedrosa, B. Choudhury, R.W. Carlson, and M. Iacomini. 2008. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohyd. Polym. 73, 1-4. https://doi.org/10.1016/j.carbpol.2007.10.016
  29. Skorupska, A., M. Janczarek, M. Marczak, A. Mazur, and J. Krol. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5, 1-7. https://doi.org/10.1186/1475-2859-5-1
  30. Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Vanhaverbeke, C., A. Heyraud, W. Achouak, and T. Heulin. 2001. Structural analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71. Carbohydr. Res. 334, 127-133. https://doi.org/10.1016/S0008-6215(01)00176-8
  32. Whang, K.S., S.H. Choi, and S.I. Han. 2007. Isolation and characterization of high viscosity polysaccharide producing endophytic bacteria from Pueraria root. Kor. J. Microbiol. 43, 341-345.
  33. Zevenhuizen, L.P.T.M. and A.R.W. van Neerven. 1983. Gelforming capsular polysaccharide of Rhizobium leguminosarum and Rhizobium trifolii. Carbohydr. Res. 124, 166-171. https://doi.org/10.1016/0008-6215(83)88366-9