References
- Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393-3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
- Amellal, N., G. Burtin, F. Bartoli, and T. Heulin. 1998. Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 64, 3740-3747.
- Atlas, R.M. and R. Bartha. 1998. Interactions between microorganisms and plants. 99-140. Microbial. Ecology. 4th. Benjamin- Cummings Publishing Company, USA.
- De Vuyst, L. and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153-177. https://doi.org/10.1111/j.1574-6976.1999.tb00395.x
- Diaz, K., C. Valiente, M. Martinez, M. Castillo, and E. Sanfuentes. 2009. Root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J. Microbiol. Biotechnol. 25, 867-873. https://doi.org/10.1007/s11274-009-9961-1
- Goubet, F., P. Jackson, M.J. Deery, and P. Dupree. 2002. Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharide and polysaccharide hydrolyses. Anal. Biochem. 300, 54-68.
- Han, J., D. Xia, L. Li, L. Sun, K. Yang, and L. Zhang. 2009. Diversity of culturable bacteria isolated from root domains of moso Bamboo (Phyllostachys edulis). Microb. Ecol. 58, 363-373. https://doi.org/10.1007/s00248-009-9491-2
- Jesus, C.M., M.A. Lourdes, P.V. Guadalupe, and E.D. Paulina. 2004. Budkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54, 1165-1172. https://doi.org/10.1099/ijs.0.02951-0
- Ji, P., M. Wilson, H.L. Campbell, and J.W. Kloepper. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato. pp. 273-276. In A. Ogoshi, K. Kobauashi, Y. Homma, F. Kodama, N. Kondo, and S, Akino (eds.), plant growth-promoting Rhizobacteria: present status and future prospects. Nakanishi printing, Sapporo, Japan.
- Kacia, Y., A. Heyraudb, M. Barakatc, and T. HeulinKaci. 2005. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 156, 522-531. https://doi.org/10.1016/j.resmic.2005.01.012
- Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteia for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
- Kim, H.J. and H.C. Jang. 2006. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Kor. J. Microbiol. Biotechnol. 34, 196-203.
- Koo, S.Y. and K.S. Cho. 2006. Interactions between plants rhizobacteria in phytoremediation of heavy metal contaminated soil. Kor. J. Microbiol. Biotechnol. 34, 83-93. https://doi.org/10.1007/s10295-006-0168-2
- Laws, A.P., M.J. Chadha, M. Chacon-Romero, V.M. Marshall, and M. Maqsood. 2008. Determination of the structure and molecular weights of the exopolysaccharide produced by Lactobacillus acidophilus 5e2 when grown on different carbon feeds. Carbohydr. Res. 343, 301-307. https://doi.org/10.1016/j.carres.2007.10.028
- Lim, Y.S. and S.K. Lee. 2009. Characteristics of exopolysaccharide produced in goat milk yogurt cultured with Streptococcus thermophilus LFG isolated from kefir. Kor. J. Food. Sci. Ani. Resour. 29, 143-150. https://doi.org/10.5851/kosfa.2009.29.2.143
- Lucy, M., E. Reed, and B.R. Glinck. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek. 86, 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
- Margaritis, A. and G.W. Pace. 1985. Microbial polysaccharides, 1005-1044. In H.W. Blanch, S. Drew, and D.I.C. Wang (eds.). Comprehensive biotechnology. 3. Pergamon Press. Oxford, USA.
- Mendrygal, K.E. and J.E. Gonzalez. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182, 599-606. https://doi.org/10.1128/JB.182.3.599-606.2000
- Mozzi, F., F. Vaningelgem, E.M. Hebert, R.V. der Meulen, M.R.F. Moreno, G.F. de Valdez, and L. De Vuyst. 2006. Diversity of heteropolysaccharide producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72, 4431-4435. https://doi.org/10.1128/AEM.02780-05
- Muleta, D., F. Assefa, K. Hjort, S. Roos, and U. Granhall. 2009. Characterization of rhizobacteria isolated from wild coffee arabica L. Eng. Life Sci. 9, 100-108. https://doi.org/10.1002/elsc.200700031
- Park, D.H., M.J. Kim, H.N. Seo, T.S. Hwang, and S.H. Lee. 2008. Characterization of exopolysaccharide (EPS) produced by Weissella hellenica SKKimchi3 isolated from kimchi. Kor. J. Microbiol. 46, 535-541. https://doi.org/10.1007/s12275-008-0134-y
- Park, K.S., J.W. Klopper, and C.M. Ryu. 2008. Rhizobacterial exopolysaccharide elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18, 1095-1100.
- Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160, 127-133. https://doi.org/10.1016/j.micres.2004.10.003
- Park, Y.I. 2000. Structures and functions of microbial extracellular or wall polysaccharides in the physiology of producer organisms. The Microorganisms and Industry 26, 18-30.
- Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12, 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1
- Saitou, N. and N. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Santaella, C., M. Schue, O. Berge, T. Heulin, and W. Achouak. 2008. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10, 2150-2163. https://doi.org/10.1111/j.1462-2920.2008.01650.x
- Serrato, R.V., G.L. Sassaki, P.A.J. Gorin, L.M. Cruz, F.O. Pedrosa, B. Choudhury, R.W. Carlson, and M. Iacomini. 2008. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohyd. Polym. 73, 1-4. https://doi.org/10.1016/j.carbpol.2007.10.016
- Skorupska, A., M. Janczarek, M. Marczak, A. Mazur, and J. Krol. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5, 1-7. https://doi.org/10.1186/1475-2859-5-1
- Thomson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Vanhaverbeke, C., A. Heyraud, W. Achouak, and T. Heulin. 2001. Structural analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71. Carbohydr. Res. 334, 127-133. https://doi.org/10.1016/S0008-6215(01)00176-8
- Whang, K.S., S.H. Choi, and S.I. Han. 2007. Isolation and characterization of high viscosity polysaccharide producing endophytic bacteria from Pueraria root. Kor. J. Microbiol. 43, 341-345.
- Zevenhuizen, L.P.T.M. and A.R.W. van Neerven. 1983. Gelforming capsular polysaccharide of Rhizobium leguminosarum and Rhizobium trifolii. Carbohydr. Res. 124, 166-171. https://doi.org/10.1016/0008-6215(83)88366-9