Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing

16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석

  • Kim, Taek-Seung (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Han-Shin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kwon, Soon-Dong (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Park, Hee-Deung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 김택승 (고려대학교 건축사회환경공학부) ;
  • 김한신 (고려대학교 건축사회환경공학부) ;
  • 권순동 (고려대학교 건축사회환경공학부) ;
  • 박희등 (고려대학교 건축사회환경공학부)
  • Received : 2010.12.06
  • Accepted : 2010.12.21
  • Published : 2010.12.31

Abstract

Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.

서로 다른 처리공정으로 운영되는 4개의 하수시설을 대상으로 16S rRNA 유전자 기반의 pyrosequencing을 이용해 활성슬러지 하수처리 생물반응기의 세균군집구조를 분석하였다. 활성 슬러지에는 Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, Planctomycetales 목에 속하는 염기서열이 전체의 54-68%를 차지해, 소수의 세균 분류군이 활성슬러지 세균군집의 대부분을 차지하고 있었다. 이들 소수 세균 분류군의 조성은 처리장별로 차이가 있었으며, 하수처리장의 운전조건 및 환경조건에 영향을 받는 것으로 추측되었다. 또한, 활성슬러지는 매우 다양한 세균 종을 가지는 것으로 관찰되었는데(Chao1 richness estimate: 1,374-2,902 operational taxonomic units), 대부분의 다양성은 희귀 종에 기인한 것으로 나타났다. 특히, 분리막으로 운영되는 하수처리시설에서 높은 다양성을 나타내었는데, 처리공정이 매우 긴 고형물체류시간으로 운영되어 느리게 성장하는 다양한 세균이 서식하는데 용이하기 때문인 것으로 판단되었다. High-throughput pyrosequencing 기술을 이용하여 활성슬러지 세균군집을 처리장별로 비교 분석한 본 연구는 향후 활성슬러지 미생물의 생태학적 특성을 보다 잘 이해하고 하수처리공정을 개선하는데 도움이 될 것이다.

Keywords

References

  1. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  2. Bitton, G. 1994. Wastewater microbiology. Wiley-Liss. New York, USA.
  3. Briones, A. and L. Raskin. 2003. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14, 270-276. https://doi.org/10.1016/S0958-1669(03)00065-X
  4. Cole, J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity, and J.M. Tiedje. 2005. The ribosomal database project (RDP-II): sequences and tools for highthroughput rRNA analysis. Nucleic Acids Res. 33, D294-D296.
  5. Juretschko, S., A. Loy, A. Lehner, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99. https://doi.org/10.1078/0723-2020-00093
  6. Kaewpipat, K. and C.P.L. Grady. 2002. Microbial population dynamics in laboratory-scale activated sludge reactors. Water Sci. Technol. 46, 19-27.
  7. Kwon, S., T.S. Kim, G.H. Yu, J.H. Jung, and H.D. Park. 2010. Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J. Microbiol. Biotechnol. 20, 1717-1723. https://doi.org/10.4014/jmb.1007.07012
  8. Metcalf and Eddy. 2003. Wastewater engineering: treatment and reuse. 4th ed. McGraw-Hill, New York, N.Y., USA.
  9. Park, H.D. and D.R. Noguera. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Wat. Res. 38, 3275-3286. https://doi.org/10.1016/j.watres.2004.04.047
  10. Radjenovic, J., M. Matosic, I. Mijatovic, M. Petrovic, and D. Barcelo. 2008. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. Handbook Environ. Chem. 37-101.
  11. Roesch, L.F., R.R. Fulthorpe, A. Riva, G. Casella, A.K.M. Hadwin, A.D. Kent, S.H. Daroub, F.A.O. Camargo, W.G. Farmerie, and E.W. Triplett. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283-290. https://doi.org/10.1038/ismej.2007.53
  12. Rothberg, J.M. and J.H. Leamon. 2008. The development and impact of 454 sequencing. Nature Biotechnol. 26, 1117-1124. https://doi.org/10.1038/nbt1485
  13. Sanapareddy, N., T.J. Hamp, L.C. Gonzalez, H.A. Hilger, A.A. Fodor, and S.M. Clinton. 2009. Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl. Environ. Microbiol. 75, 1688-1696. https://doi.org/10.1128/AEM.01210-08
  14. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  15. Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13, 218-227. https://doi.org/10.1016/S0958-1669(02)00315-4
  16. Wagner, M., A. Loy, R. Nogueira, U. Purkhold, N. Lee, and H. Daims. 2002. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81, 665-680. https://doi.org/10.1023/A:1020586312170
  17. Wells, G.F., H.D. Park, C.H. Yeung, B. Eggleston, C.A. Francis, and C.S. Criddle. 2009. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11, 2310-2328. https://doi.org/10.1111/j.1462-2920.2009.01958.x
  18. Xia, S.Q., L.A. Duan, Y.H. Song, J.X. Li, Y.M. Piceno, G.L. Andersen, L. Alvarez-Cohen, I. Moreno-Andrade, C.L. Huang, and S.W. Hermanowicz. 2010. Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ. Sci. Technol. 44, 7391-7396. https://doi.org/10.1021/es101554m