Strain Development for the Over-production of Alkaline Protease from Vibrio metschnikovii by Molecular Evolution

분자진화 기술을 통한 Vibrio metschnikovii 유래 고활성 알칼리성 단백질 분해효소 생산균주 개발

  • Shin, Yong-Uk (R&D Center for Bioproducts, CJ Cheiljedang Corp.) ;
  • Lee, Gwa-Soo (Cell Biotech) ;
  • Jo, Jae-Hyung (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Lee, Hyune-Hwan (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • Received : 2010.12.17
  • Accepted : 2010.12.22
  • Published : 2010.12.31

Abstract

Alkaline protease-overproducing strains of Vibrio metschnikovii were developed by using the molecular evolution from the classical mutants V. metschnikovii L12-23, N4-8, and KS1. Each vapK (Vibrio alkaline protease K) was obtained from the genomic DNAs of mutants by PCR to carry out the DNA shuffling. The modified vapK-1 obtained by DNA shuffling was used again as a template for the error-prone PCR to make the vapK-2. Both genes were cloned in the plasmid pKF3 to construct the recombinant plasmids which have one or two copies of the modified genes. The recombinant plasmids were back-transformed to V. metschnikovii KS1 to construct recombinant V. metschnikovii that expresses the alkaline protease. About 3.9-fold more protease activity was measured in the strain which has the plasmid containing two copies of vapK-2 when compared to strain KS1. When compared to wild type V. metschnikovii RH530, 43-fold more activity was achieved. Comparison of amino acids among vapK, vapK-1, and vapK-2 revealed that the active sites was highly conserved and not changed. However, many amino acids except the active sites were changed. These results suggested that the changes in amino acids might play an important role in the increase of protease activity by allowing the easy access of substrate to active sites of the protease. The fermentation of alkaline protease from the V. metschnikovii KS1 harboring the plasmid that contains two copies of vapK-1 showed the possibility of this strain to be used as industrial producer.

알칼리성 단백질 분해효소 고생산 돌연변이 균주 Vibrio metschnikovii L12-23, N4-8, KS1으로부터 알칼리성 단백질 분해효소를 암호화하는 vapK (Vibrio alkaline protease K) 유전자들을 PCR에 의하여 분리한 다음 DNA shuffling, error-prone PCR 방법과 같은 분자진화 기술을 통해 고활성 단백질 분해효소를 생산하는 재조합 V. metschnikovii 균주를 제작하였다. DNA shuffling 방법을 통해 변형시킨 vapK-1 유전자와 이 유전자를 주형으로 error-prone PCR 기법을 통해 재 변형된 vapK-2 유전자를 cloning한 후 V. metschnikovii KS1 균주에 역도입하여 재조합 균주를 제조하였다. 재조합 균주들의 단백질 분해 능력을 조사한 결과 vapK-2 유전자가 2 copy 도입된 재조합 균주의 경우 야생형 균주인 V. metschnikovii RH530에 비해 43.6배 높은 단백질 분해활성을 보였으며 숙주인 V. metschnikovii KS1에 비해 약 3.9배 향상된 단백질 분해 활성을 확인할 수 있었다. 변형된 vapK-1과 vapK-2 유전자를 야생형 vapK 유전자의 염기서열을 비교 분석한 결과 단백질 분해 능력의 활성에 영향을 미치는 active site를 제외한 부분에서 변화가 일어났음을 확인 할 수 있었다. 변형된 유전자 vapK-1을 two copy를 포함한 재조합 플라스미드를 가진 V. metschnikovii KS1을 30 L fermentor로 배양 하였을 때 배양 후 35 시간에 18,000 PU/ml의 활성을 보였으며, 이는 향후 산업용 균주로서 사용될 수 있는 가능성을 제시하였다.

Keywords

References

  1. Anwar, A. and S. Mohammed. 1998. Alkaline proteases: a review. Bioresour. Technol. 64, 139-144. https://doi.org/10.1016/S0960-8524(97)00164-8
  2. Banerjee, U.C., R.K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Proc. Biochem. 35, 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
  3. Chung, S.S., Y.U. Shin, H.J. Kim, G.H. Jin, H.M. Rho, and H.H. Lee. 2000. Isolation of high yielding alkaline protease mutants of Vibrio metschnikovii strain RH530 and detergency properties of enzyme. J. Microbial. Biotechnol. 10, 349-354.
  4. Chung, S.S., H.J. Kim, Y.U. Shin, G.H. Jin, and H.H. Lee. 2001. Molecular characterization of gene encoding an extracellular alkaline protease in Vibrio metschnikovii. Biotechnol. Lett. 23, 1175-1182. https://doi.org/10.1023/A:1010525428239
  5. Chung, S.S., Y.U. Shin, H.J. Kim, G.H. Jin, and H.H. Lee. 2001. Transformation of an alkaline protease overproducer, Vibrio metschnikovii strain RH530, and improvement of plasmid stability by the par locus. J. Microbiol. Bioltechnol. 11, 222-228.
  6. Deane, S.M., F.T. Robb, and D.R. Woods. 1987. Production and activation of a SDS-resistant alkaline serine exoprotease of Vibrio alginolyticus. J. Gen. Microbiol. 133, 391-398.
  7. Gunkel, F.A. and H.G. Gassen. 1989. Proteinase K from Tritirachium album Limber. Eur. J. Biochem. 179, 185-194. https://doi.org/10.1111/j.1432-1033.1989.tb14539.x
  8. Gupta, R., Q.K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15-32. https://doi.org/10.1007/s00253-002-0975-y
  9. Kaneto, R., N. Koyama, Y.C. Tsai, R.Y. Juang, K. Yoda, and M. Yamasaki. 1989. Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J. Bacteriol. 171, 5232-5236. https://doi.org/10.1128/jb.171.9.5232-5236.1989
  10. Ko, H., W.H. Jang, E.K. Kim, H.H. Lee, K.D. Park, J.H. Chung, and O.J. Yoo. 1996. Enhancement of thermostability and catalytic efficiency of AprP, an alkaline protease from Pseudomonas sp. by the introduction of a disulfide bond. Biochem. Biophy. Res. Commun. 221, 631-635. https://doi.org/10.1006/bbrc.1996.0647
  11. Kumar, C.G. and H. Takagi. 1999. Microbial alkaline proteases from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  12. Kwon, Y.T., S.Y. Moon, J.O. Kim, Y.H. Kho, and H.M. Rho. 1992. Characterization of extracellular proteases from alkalophilic Vibrio sp. strain RH530. Kor. J. Microbiol. 30, 501-506.
  13. Kwon, Y.T., J.O. Kim, S.Y. Moon, H.H. Lee, and M.M. Rho. 1994. Extracellular alkaline proteases from alkalophilic Vibrio metschnikovii strain RH530. Biotechnol. Lett. 16, 413-418.
  14. Mamur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208-218. https://doi.org/10.1016/S0022-2836(61)80047-8
  15. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd (ed.). Cold Spring Harbor Laboratory Press, New York, N.Y., USA.
  16. Smith, E.L., R.J. DeLange, W.H. Evans, M. Landon, and F.S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243, 2184-2191.
  17. Stemmer, W.P. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747-10751. https://doi.org/10.1073/pnas.91.22.10747
  18. Yanagida, N., T. Uozumi, and T. Beppu. 1984. Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J. Bacteriol. 166, 937-944.