DOI QR코드

DOI QR Code

Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model

대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화 분석

  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 홍자영 (부산대학교 지구환경시스템학부) ;
  • 심교문 (국립농업과학원)
  • Received : 2009.11.18
  • Accepted : 2010.03.26
  • Published : 2010.03.30

Abstract

According to IPCC 4th Assessment Report, concentration of carbon dioxide has been increasing by 30% since Industrial Revolution. Most of IPCC $CO_2$ emission scenarios estimate that the concentration will reach up to double of its present level within 100-year if the current tendency continues. The global warming has resulted in the agro-climate change over the Korean Peninsula as well. Accordingly, it is necessary to understand the future agro-climate induced by the increase of greenhouse gases in terms of the agro-climatic indices in the Korean peninsula. In this study, the future climate is simulated by an atmosphere/ocean/land surface/sea ice coupled general circulation climate model, Pusan National University Coupled General Circulation Model(hereafter, PNU CGCM), and by a regional weather prediction model, Weather Research and Forecasting Model(hereafter, WRF) for the purpose of a dynamical downscaling. The changes of the vegetable period and the crop growth period, defined as the total number of days of a year exceeding daily mean temperature of 5 and 10, respectively, have been analyzed. Our results estimate that the beginning date of vegetable and crop growth periods get earlier by 3.7 and 17 days, respectively, in spring under the $CO_2$-doubled climate. In most of the Korean peninsula, the predicted frost days in spring decrease by 10 days. Climatic production index (CPI), which closely represent the productivity of rice, tends to increase in the double $CO_2$ climate. Thus, it is suggested that the future $CO_2$ doubled climate might be favorable for crops due to the decrease of frost days in spring, and increased temperature and insolation during the heading date as we expect from the increased CPI.

본 연구에서는 지구온난화에 따른 식물기간과 작물 기간 등과 관련된 농업기후지수의 변화를 살펴보기 위하여 접합 대순환 모형인 PNU CGCM에 의해 모의 된 $CO_2$ 배증 실험 결과를 지역기후 모형인 WRF에 two-way double nesting방법을 이용하여 역학적 규모 축소법을 적용 후, 그 결과를 분석하였다. 분석 기간은 배증 실험 시작 후 51년부터 55년까지 5년 동안의 3월~9월이다. 분석 결과 기온은 뚜렷하게 상승하는 모습을 볼 수 있었으며, 강수는 지역별로 차이를 보였으나 전반적으로 증가할 것으로 예상되었다. 상대습도와 토양온도도 증가하였으나 일사는 감소할 것으로 보인다. 풍속은 지역별로 큰 차이 없이 다소 상승할 것으로 모의되었다. 최저기온은 최고기온보다 상승폭이 커서 일교차는 줄어들 것으로 예상된다. 봄철 서리일수는 감소하고, 마지막 서리일은 빨라질 것으로 나타난다. 일 평균기온이 5 이상인 일수는 3월에 가장 큰 증가가 있을 것으로 보이며, 식물온도의 평균 출현초일은 한반도 평균적으로 3.7일 정도 빨라지는 것을 알 수 있었다. 그리고 한반도 북부지역보다 남부지역에서 출현초일이 앞당겨질 것으로 예상된다. 일 평균 기온이 10 이상 출현지속 기간인 작물온도의 평균 출현초일은 평균적으로 17일 빨라질 것으로 보이며 지역적으로 분석하였을 때, 강원도 산맥지역에서는 작물온도의 출현초일에 큰 변화가 없을 것으로 예상된다. 그리고 기후생산력 지수는 출수 후 40일간의 평균 일조시간과 기온의 상승으로 인해 증가할 것으로 예상된다. 따라서 $CO_2$ 배증에 의해 변화된 한반도 기후는 식물 및 작물의 생장과 벼 생장에 좋은 영향을 미칠 것으로 예상된다. 따라서 지구 온난화에 따라 예상되는 한반도 기후변화에 적합한 작부체계의 개선이 향후 필요할 것으로 생각된다. 그리고 본 연구는 하나의 시나리오를 적용한 결과이므로 보다 다양한 시나리오를 적용하여 그에 따른 농업기후지수 변화를 살펴보는 연구가 필요하다.

Keywords

References

  1. Ahn, J. B., C. K. Park, and E. S. Im, 2001: Reproductionof regional scale surface air temperature by estimatingsystematic bias of mesoscale numerical model. Journalof the Korean Meteorological Society 38(1), 69-80. (inKorean with English abstract)
  2. Ahn, J. B., and J. A. Lee, 2001: Numerical study on therole of sea-ice using ocean general circulation model. TheSea, Journal of the Korean Society of Oceanography 6(4),225-233. (in Korean with English abstract)
  3. Ahn, J. B., and Y. J. Hwang, 2005: A study of predictability ofCME/PNU CGCM for East Asia winter temperature.Journal of the Korean Meteorological Society 41(6),943-954. (in Korean with English abstract)
  4. Bonsal, B. R., X. Zhang, L. A. Vincent, and W. D. Hogg,2001: Characteristics of daily and extreme temperaturesover Canada. Journal of Climate 14(9), 1959-1976. https://doi.org/10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced landsurface/hydrology model with the Penn State/ NCARMM5 modeling system. Part I: Model description andimplementation. Monthly Weather Review 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  6. Dudhia, J., 1989: Numerical study of convection observedduring the winter monsoon experiment using a mesoscaletwo-dimensional model. Journal of the AtmosphericSciences 46(20), 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  7. Frich, P., L.V. Alexander, P. Della-Marta, B. Gleason, M.Haylock, A.M.G. Klein Tank, and T. Peterson, 2002:Observed coherent changes in climatic extremes duringthe second half of the twentieth century. ClimateResearch 19, 193-212. https://doi.org/10.3354/cr019193
  8. Heino, R., R. Brazdil, E. Forland, H. Tuomenvirta, H. Alexandersson, M. Beniston, C. Pfister, M. Rebetez, G. Rosenhagen, S. Rosner, and J. Wibig, 1999: Progress in the study of climate extremes in northern and central Europe. Climatic Change 42(1), 151-181. https://doi.org/10.1023/A:1005420400462
  9. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment6-class microphysics scheme (WSM6), Journal ofthe Korean Meteorological Society 42(2), 129-151.
  10. Im, E. S., J. B. Ahn, W. T. Kwon, and F. Giorgi, 2008:Multi-decadal scenario simulation over Korea using aone-way double-nested regional climate model system.Part 2: future climate projection (2021-2050). ClimateDynamics 30(2/3), 239-254. https://doi.org/10.1007/s00382-007-0282-5
  11. Im, E. S., J. B. Ahn, A. R. Remedio, and W. T. Kwon,2008: Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in theRegCM3 modelling system. Part 1: Focus on the Koreanpeninsula. International Journal of Climatology 28(14),1861-1877. https://doi.org/10.1002/joc.1664
  12. IPCC, 2007: Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the FourthAssessment Report of the Intergovernmental Panel onClimate Change, Solomon, S., D. Qin, M. Manning, Z.Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L.Miller (eds.), Cambridge University Press, Cambridge,United Kingdom.
  13. Jeong, H. I., and J. B. Ahn, 2007: Long-term Predictabilityfor El Nino/La Nina using PNU/CME CGCM. The Sea,Journal of the Korean Society of Oceanography 12(3),170-177. (in Korean with English abstract)
  14. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  15. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulkparameterization of the snow field in a cloud model.Journal of Applied Meteorology 22(6), 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  16. Meehl, G. A., C. Tebaldi, and D. Nychka, 2004: Changes infrost days in simulations of twentyfirst century climate.Climate Dynamics 23(5), 495-511. https://doi.org/10.1007/s00382-004-0442-9
  17. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S.A. Clough, 1997: Radiative transfer for inhomogeneousatmosphere: RRTM, a validated correlated-k model forthe longwave. Journal of Geophysical Research Atmospheres102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  18. Moonen, A. C., L. Ercoli, M. Mariotti, A. Masoni, 2002:Climate change in Italy indicated by agrometeorologicalindices over 122 years. Agricultural and Forest Meteorology111(1), 13-27. https://doi.org/10.1016/S0168-1923(02)00012-6
  19. Park H. S., and J. B. Ahn, 2004: Development of a newCGCM and ENSO hindcast experiment using theCGCM(I). Journal of the Korean Meteorological Society40(2), 135-146. (in Korean with English abstract)
  20. Shim, K. M., G. Y. Kim, K. A. Roh, H. C. Jeong, and D. B.Lee, 2008: Evaluation of Agro-Climatic Indices underClimate Change. Korean Journal of Agricultural andForest Meteorology 10(4), 113-120. (in Korean withEnglish abstract) https://doi.org/10.5532/KJAFM.2008.10.4.113
  21. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D.M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J.G. Powers, 2008: A description of the advanced researchWRF, version 3. NCAR Technical Note, NCAR/TN-475+STR, 125 pp.

Cited by

  1. Comparison of Characteristics and Spatial Distribution Tendency of Daily Precipitation based on the Regional Climate Models for the Korean Peninsula vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.59
  2. Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.108
  3. Present-Day Climate of the Korean Peninsula Centered Northern East Asia Based on CMIP5 Historical Scenario Using Fine-Resolution WRF vol.23, pp.4, 2013, https://doi.org/10.14191/Atmos.2013.23.4.527
  4. Analysis of Regional-Scale Weather Model Applicabilities for the Enforcement of Flood Risk Reduction vol.32, pp.5B, 2012, https://doi.org/10.12652/Ksce.2012.32.5B.267
  5. Projection of 21st Century Climate over Korean Peninsula: Temperature and Precipitation Simulated by WRFV3.4 Based on RCP4.5 and 8.5 Scenarios vol.24, pp.4, 2014, https://doi.org/10.14191/Atmos.2014.24.4.541
  6. Characteristics of Daily Precipitation Data Based on the Detailed Climate Change Ensemble Scenario Depending on the Regional Climate Models and the Calibration vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.261