DOI QR코드

DOI QR Code

On Estimation of Zero Plane Displacement from Single-Level Wind Measurement above a Coniferous Forest

침엽수림 상부의 단일층 풍속 관측으로부터의 영면변위 추정에 관하여

  • Yoo, Jae-Ill (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University) ;
  • Hong, Jin-Kyu (National Institute for Mathematical Sciences) ;
  • Kwon, Hyo-Jung (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University) ;
  • Lim, Jong-Hwan (Division of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Joon (Biometeorological Laboratory / Global Environment Laboratory, Department of Atmospheric sciences, Yonsei University)
  • 유재일 (연세대학교 생물기상연구실/지구환경연구소, 대기과학과) ;
  • 홍진규 (국가수리과학연구소) ;
  • 권효정 (연세대학교 생물기상연구실/지구환경연구소, 대기과학과) ;
  • 임종환 (국립산림과학원 산림보전부) ;
  • 김준 (연세대학교 생물기상연구실/지구환경연구소, 대기과학과)
  • Received : 2009.12.09
  • Accepted : 2010.03.25
  • Published : 2010.03.30

Abstract

Zero plane displacement (d) is the elevated height of the apparent momentum sink exerted by the vegetation on the air. For a vegetative canopy, d depends on the roughness structure of a plant canopy such as leaf area index, canopy height and canopy density, and thus is critical for the analysis of canopy turbulence and the calculation of surface scalar fluxes. In this research note, we estimated d at the Gwangneung coniferous forest by employing two independent methods of Rotach (1994) and Martano (2000), which require only a single-level eddy-covariance measurement. In general, these two methods provided comparable estimates of $d/h_c$ (where $h_c$ is the canopy height, i.e., ~23m), which ranged from 0.51 to 0.97 depending on wind directions. These estimates of $d/h_c$ were within the ranges (i.e., 0.64~0.94) reported from other forests in the literature but were sensitive to the forms of the nondimensional functions for atmospheric stability. Our finding indicates that one should be careful in interepreation of zero plane displacement estimated from a single-level eddy covariance measurement that is conductaed within the roughness sublayer.

영면변위(d)는 거친 식생군락에 의해 운동량이 모두 흡수되어 군락 내의 대수적 풍속 프로파일이 0이 되는 높이를 말한다. 군락의 표면 거칠기의 구조를 나타내는 영면변위는 군락난류의 분석과 지표 스칼라 플럭스의 계산에 매우 중요하다. 본 단보에서는 Monin-Obukhov 상사이론에 기반을 두고 단일층에서 관측된 평균수평풍속 자료를 사용하는 두 가지 다른 방법을 사용하여 광릉침엽수림에서 d 값을 추정하였다. 관측지의 비균질성과 복잡성을 고려해서, 표면거칠기와 바람체계가 d에 미칠수 있는 영향을 살펴보기 위해, 자료를 매 $30^{\circ}$ 간격의 풍향별로 나누었다. 전반적으로 두 방법을 사용한 결과는 서로 비슷했는데, $d/h_c$ (여기서 $h_c$는 군락의 높이로서 약 ~23m)는 풍향에 따라 0.51~0.97의 범위를 보였다. 이러한 $d/h_c$의 값의 범위는 문헌에 보고되어 있는 범위(0.64~0.94)와 크게 다르지 않았으나, 다소 높은 쪽에 분포되어 있었다. 이러한 원인의 하나로는 관측이 두 방법의 전제인 Monin-Obukhov 상사이론이 성립하지 않는 거칠기아층에서 이루어졌기 때문인 것으로 사료된다. 따라서 관측높이가 거칠기 아층에 존재할 경우에는 단일층 풍속으로부터 영면변위를 추정하는 방법을 적용하고 그 결과를 해석하는 데에 세심한 주의가 필요하다.

Keywords

References

  1. Arya, S. P 2001: Introduction to micrometeorology. AcademicPress, London, UK, 188-203.
  2. Beljaars, A. C. M., P. Schotanus, and F. T. M. Nieuwstadt,1983: Surface layer similarity under nonuniform fetchconditions. Journal of Applied Meteorology 22(10),1800-1810. https://doi.org/10.1175/1520-0450(1983)022<1800:SLSUNF>2.0.CO;2
  3. de Bruin, H. A. R., and C. J. Moore, 1985: Zero-planedisplacement and roughness length for tall vegetation,derived from a simple mass conservation hypothesis.Boundary-Layer Meteorology 31(1), 39-49. https://doi.org/10.1007/BF00120033
  4. Foken, T., 2006: 50 Years of the Monin–Obukhov similaritytheory. Boundary-Layer Meteorology 119(3), 431-447. https://doi.org/10.1007/s10546-006-9048-6
  5. Kaimal, J. C. and J. J. Finnigan, 1994: Atmospheric BoundaryLayer Flows. Oxford University Press, New York, 15-21pp.
  6. Katul, G., S. M. Goltz, C.-I. Hsieh, Y. Cheng, F. Mowry,and J. Sigmon, 1995: Estimation of surface heat andmomentum fluxes using the flux-variance method aboveuniform and non-uniform terrain. Boundary-LayerMeteorology 74(3), 237-260. https://doi.org/10.1007/BF00712120
  7. Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon,J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B.Lee, B.-L. Lee, and S. Kim, 2006: HydroKorea andCarboKorea: cross-scale studies of ecohydrology andbiogeochemistry in a heterogeneous and complex forestcatchment of Korea. Ecological Research 21(6), 881-889. https://doi.org/10.1007/s11284-006-0055-3
  8. Lee, D., J. Kim, S.-J. Kim, S.-K. Moon, J. Lee, J.-H. Lim,Y. Son, S. Kang, S. Kim, K. Kim, N. Woo, B. Lee, andS. Kim, 2007: Lessons from cross-scale studies of waterand carbon cycles in the Gwangneung forest catchmentin a complex landscape of monsoon Korea. Korean.Journal of Agricultural and Forest Meteorology 9(2),149-160. https://doi.org/10.5532/KJAFM.2007.9.2.149
  9. Lim, J.-H., 2006: Ecological measurement and analysis.Development of HydroKorea - Sustainable Water ResourcesResearch Program, 300 pp.
  10. Lloyd, C. R., A. D. Culf, A. J. Dolman, and J. H. C. Gash,1991: Estimates of sensible heat flux from observationsof temperature fluctuations. Boundary-Layer Meteorology57(4), 311-322. https://doi.org/10.1007/BF00120051
  11. Molion, L. C. B., and C. J. Moore, 1983: Estimating thezero-plane displacement for tall vegetation using a massconservation method. Boundary-Layer Meteorology 26(2),115-125. https://doi.org/10.1007/BF00121537
  12. Moon, S.-K., S.-H. Park, J. Hong, and J. Kim, 2005: Spatial Characteristics of Gwangneung Forest Site Based onHigh Resolution Satellite Images and DEM. KoreanJournal of Agricultural and Forest Meteorology 7(1),115-123.
  13. Raupach, M. R. 1994: Simplified expressions for vegetationroughness length and zero-plane displacement asfunctions of canopy height and area index. Boundary-Layer Meteorology 71, 211-216. https://doi.org/10.1007/BF00709229
  14. Shaw, R. H., and A. R. Pereira, 1982: Aerodynamic Roughnessof a Plant Canopy - a Numerical Experiment. AgriculturalMeteorology 26, 51-65. https://doi.org/10.1016/0002-1571(82)90057-7
  15. Sozzi, R., M. Favaron, and T. Georgiadis, 1998: Methodfor Estimation of Surface Roughness and SimilarityFunction of Wind Speed Vertical Profile. Journal ofApplied Meteorology 37(5), 461-469. https://doi.org/10.1175/1520-0450(1998)037<0461:MFEOSR>2.0.CO;2
  16. Stull, R. B. 1988: An Introduction to Boundary LayerMeteorology. Kluwer Academic Publishers, Dordrecht,The Netherlands, 262-263 pp.
  17. Takagi, K., A. Miyata, Y. Harazono, N. Ota, M. Komine,and M. Yoshimoto, 2003: An alternative approach todetermining zero-plane displacement, and its applicationto a lotus paddy field. Agricultural and Forest Meteorology115(3-4), 173-181. https://doi.org/10.1016/S0168-1923(02)00209-5
  18. Tillman, J. E., 1972: The indirect determination of stability,heat and momentum fluxes in the atmospheric boundarylayer from simple scalar variables during dry unstableconditions. Journal of Applied Meteorology 11(5), 783-792. https://doi.org/10.1175/1520-0450(1972)011<0783:TIDOSH>2.0.CO;2
  19. Wiernga, J., 1993: Representative roughness parameters forhomogeneous terrain. Boundary-Layer Meteorology 63(4),323-363. https://doi.org/10.1007/BF00705357
  20. Wyngaard, J. C., O. R. Cote, and Y. Izumi, 1971: Localfree convection, similarity, and the budgets of shearstress and heat flux. Journal of the Atmospheric Sciences28(7), 1171-1182. https://doi.org/10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2

Cited by

  1. A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.339
  2. Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas vol.26, pp.1, 2016, https://doi.org/10.14191/Atmos.2016.26.1.111