Influence of Hydrophobic Silica on Physical Properties of Epoxy Nanocomposites for Epoxy Molding Compounds

에폭시 몰딩 컴파운드를 위한 에폭시 나노복합재료의 소수성 실리카의 영향

  • Received : 2010.01.08
  • Accepted : 2010.01.20
  • Published : 2010.03.30

Abstract

In this work, the effect of hydrophobic treated silica on the water absorption, thermal stabilities, and mechanical properties of the epoxy nanocomposites were investigated as a function of the silica content. As filler, fumed silica treated by dimethyldichlorosilane was used. It was found that the silica was well dispersed in the epoxy resins by the melt-mixing method with the addition of a silane coupling agent. The water absorption of the nanocomposites decreased with an increase of the silica content due to the effect of hydrophobic treated silica. The thermal properties, such as thermal degradation temperature, glass transition temperature ($T_g$), and coefficient of thermal expansion (CTE), of the nanocomposites were improved by the addition of silica. Furthermore, the mechanical properties of the nanocomposites, that is, the tensile strength and modulus, were enhanced with increasing silica content. This was attributed to the physically strong interaction between silica and epoxy resins.

본 연구에서는 에폭시 나노복합재료의 수분 흡수, 열적 안정성 및 기계적 특성에 대한 소수성 실리카의 효과에 대해 고찰하였고, 에폭시 수지의 필러로는 디메틸디크로로실란에 의해 소수성으로 처리된 실리카를 사용하였다. 실험 결과, 실리카는 실란 커플링제의 첨가후 용융혼합법에 의하여 에폭시 수지내에서 균일하게 분산되었으며, 나노복합체의 수분 흡수율은 소수성으로 처리된 실리카의 함량 증가와 함께 감소하는 것을 확인하였다. 열분해 온도, 유리전이 온도, 그리고 열팽창 계수를 통한 나노복합재료의 열안정성은 실리카의 첨가와 함께 향상되는 것을 확인하였다. 또한, 인장강도 및 탄성율을 통한 나노복합재료의 기계적 특성은 실리카 함량 증가와 함께 증가하였고, 이는 에폭시 수지내에 고르게 분산된 실리카와 에폭시 수지 간의 강한 물리적 상호작용에 기인하는 것으로 판단된다.

Keywords

References

  1. M. G. Pecht, R. Agarwal, P. McCluskey, S. Javadpour, and R. Mahajan, "Electronic Packaging", CRC Press, New York, 1999.
  2. L. Prezzi and L. Mascia, "Network density control in epoxy- silica hybrids by selective silane functionalization of precursors", Adv. Polym. Technol., 24, 91 (2005). https://doi.org/10.1002/adv.20033
  3. J. H. Roh, J. H. Lee, N. I. Kim, H. M. Kang, T. H. Yoon, and K. H. Song, "DSC analysis of epoxy molding compound with plasma polymer-coated silica fillers", J. Appl. Polym. Sci., 90, 2508 (2003). https://doi.org/10.1002/app.12914
  4. Y. S. Chung, M. Y. Jeon, and C. K. Kim, "Fabrication of nearly monodispersed silica nanoparticles by using poly(1-vi-ny1- 2-pyrrolidinone) and their application to the preparation of nanocomposites", Macromol. Res., 17, 37 (2009). https://doi.org/10.1007/BF03218599
  5. A. S. Patole, S. P. Patole, M. H. Song, J. Y. Yoon, J. H. Kim, and T.H. Kim, "Synthesis and characterization of silica/ polystyrene composite nanoparticles by in situ miniemulsion polymerization", Elastomers and Composites, 44, 34 (2009).
  6. C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park, "Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning", Mater. Lett., 57, 1579 (2003). https://doi.org/10.1016/S0167-577X(02)01036-4
  7. S. M. Choi, E. K. Lee, and S. Y. Choi, "Effects of silane- treated silica on the cure temperature and mechanical properties of elastomeric epoxy", Elastomers and Composites, 43, 147 (2008).
  8. M. Ochi, R. Takahashi, and A. Terauchi, "Phase structure and mechanical and adhesion properties of epoxy/silica hybrids", Polymer, 42, 5151 (2001). https://doi.org/10.1016/S0032-3861(00)00935-6
  9. G. Schiavon, J. G. Kuchler, B. Corain, and W. Hiller, "Force modulation atomic force microscopy as a powerful tool in organic-inorganic hybrid materials analysis", Adv. Mater., 13, 310 (2001). https://doi.org/10.1002/1521-4095(200103)13:5<310::AID-ADMA310>3.0.CO;2-C
  10. B. M. Novak, "Hybrid nanocomposite materials between inorganic glassed and organic polymers", Adv. Mater., 5, 422 (1993). https://doi.org/10.1002/adma.19930050603
  11. P. L. Teh, M. Jaafar, H. M. Akil, K. N. Seetharamu, A. N. R. Wagiman, and K. S. Beh, "Thermal and mechanical properties of particulate fillers filled epoxy composites for electronic packaging application", Polym. Adv. Technol., 19, 308 (2008). https://doi.org/10.1002/pat.1014
  12. J. W. Bae, W. Kim, S. Hwang, Y. S. Choe, and S. H. Lee, "A low-viscousity, highly thermally conductive epoxy molding compound (EMC)", Macromol. Res., 12, 78 (2004). https://doi.org/10.1007/BF03218998
  13. M. Yamaguchi, Y. Nakamura, and T. Iida, "Process induces fiber orientation: Numerical simulation with experimental verification", Polym. Compos., 6, 85 (1998)
  14. W. Zhang, A. A. Dehghani-Sanij, and R. S. Blackburn, "IR study on hydrogen bonding in epoxy resin-silica nanocomposites", Prog. Nat. Sci., 18, 801 (2008). https://doi.org/10.1016/j.pnsc.2008.01.024
  15. L. Cheng, L. Zheng, G. Li, J. Zeng, and Q. Yin, "Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites", Physica B, 403, 2584 (2008). https://doi.org/10.1016/j.physb.2008.01.021
  16. F. L. Jin, K. Y. Lee, and S. J. Park, "Surface treatment of montmorillonite on the thermal stabilities of bisphenol-A diglycidyl dimethacrylate nanocomposites", Mater. Sci. Eng. A, 435, 429 (2006). https://doi.org/10.1016/j.msea.2006.07.071
  17. W. G. Kim and J. H. Ryu, "Physical properties of epoxy molding compound for semiconductor encapsulation according to the coupling treatment process change of silica", J. Appl. Polym. Sci., 65, 1975 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970906)65:10<1975::AID-APP15>3.0.CO;2-W
  18. S. J. Park, F. L. Jin, and C. J. Lee, "Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins", Mater. Sci. Eng. A, 402, 335 (2005). https://doi.org/10.1016/j.msea.2005.05.015
  19. F. L. Jin and S. J. Park, "Interfacial toughness properties of trifunctional epoxy resins/calcium carbonate nanocomposites", Mater. Sci. Eng. A, 475, 190 (2008). https://doi.org/10.1016/j.msea.2007.04.046