DOI QR코드

DOI QR Code

Optimization of a capacitive sensor for high dynamic range

높은 동적영역을 갖기 위한 정전용량형 센서의 최적화

  • 강대실 (POSTECH 음향진동 트랜스듀서 실험실) ;
  • 김무진 (삼성전자) ;
  • 문원규 (POSTECH 음향진동 트랜스듀서 실험실)
  • Received : 2009.11.16
  • Accepted : 2010.03.05
  • Published : 2010.03.31

Abstract

The capacitive sensor has a simple structure, compact size and low cost, but a small dynamic range. The small range is caused by use of gap variation. If the sensor takes area variation type with one plate moving horizontally, it can have a large measurable range. While the area variation has relatively low sensitivity, some studies have found methods to improve the sensitivity. Even though the methods are effective, parameters of the results are limited and 2 dimensional. This study provides more practical and 3 dimensional analysis and suggests relations between parameters. Using the results, the optimized design parameters of a high dynamic range capacitive sensor can be found.

Keywords

References

  1. "Metrology". wikipedia.
  2. PI. "Capacitive position sensors - nanometrology solutions". In: Physikinstrunmente, editor: Physikinstrunmente, 2009.
  3. Kim JY, Lee, LD, Park KH, Ma SD, and Yang DJ, "Precision in situ measurement using non-contacting capacitive sensor with 4-electrodes", J. the Kor. Soc. of Precision Engineering, vol. 19, pp. 33-38, 2002.
  4. Wolfendale PCF, "Capacitive displacement transducers with high accuracy and resolution", J. Physics E : Scientific Instruments, vol. 1, pp. 817-818, 1968. https://doi.org/10.1088/0022-3735/1/8/311
  5. ITRS. "International technology roadmap for semiconductors", 2005.
  6. ITRS. "Advantages and challenges associated with the introduction of 450 mm wafers", ITRS, 2005.
  7. Kim M and Moon W, "A new linear encoder-like capacitive displacement sensor", Measurement, vol. 39, pp. 481-489, 2006. https://doi.org/10.1016/j.measurement.2005.12.012
  8. Zhu F and J.W.Spronck, "A simple capacitive displacement sensor", Sensors and Actuators A, vol. 25-27, pp. 265-269, 1991.
  9. Hirasawa M, Nakamura M, and Kanno M, "Optimum from of capacitive transducer for displacement measurement", IEEE Transactions on Instrumentation and Measurement, vol. IM-33, pp. 276-280, 1984.
  10. A.A. Arkadan, S. Subramaniam, Sivanesan, and O. Douedari, "Design optimization of a capacitive transducer for displacement measurement", IEEE Transactions on magnetics, vol. 35, pp. 1869-1872, 1999. https://doi.org/10.1109/20.767398
  11. Heerens WC, "Application of capacitance techniques in sensor design", J. Physics E: Scientific Instruments, vol. 19, pp. 897-906, 1986. https://doi.org/10.1088/0022-3735/19/11/002
  12. KLAASSEN KB and PEPPEN JCLV, “Linear capacitive microdisplacement transduction using phase read-out”, Sensors and Actuators, vol. 3, pp. 209-220, 1982/83. https://doi.org/10.1016/0250-6874(82)80024-3
  13. Kim M and Moon W, "A new capacitive displacement sensor for high accuracy and long range", J. Kor. Sensors Soc., vol. 14, pp. pp.219-224, 2005. https://doi.org/10.5369/JSST.2005.14.4.219
  14. Xiang Y, "The electrostatic capacitance of an inclined plate capacitor", J. Electrostatics, vol. 64, pp. 29-34, 2006. https://doi.org/10.1016/j.elstat.2005.05.002
  15. Homentcovschi D, "Electrostatic field of a system of aligned electrodes", J. Electrostatics, vol. 26, pp. 187-200, 1991. https://doi.org/10.1016/0304-3886(91)90015-8
  16. Kim M, Moon W, Yoon E, and Lee K-R, "A new capacitive displacement sensor with high accuracy and long-range", Sensors and Actuators A, vol. 103-131, pp. 135-141, 2006. https://doi.org/10.1016/j.sna.2005.12.012

Cited by

  1. Micro-Machined Capacitive Linear Encoder with a Mechanical Guide vol.21, pp.6, 2012, https://doi.org/10.5369/JSST.2012.21.6.440