DOI QR코드

DOI QR Code

High throughput sorting(HTS) system using a cantilever-type electrode array

캔틸레버(Cantilever) 형태의 전극 어레이(array)를 이용한고속 분리 시스템

  • Lee, Jung-Hun (School of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Young-Ho (KAU Robotics Center, Korea Aerospace University) ;
  • Kim, Young-Geun (School of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Byung-Kyu (KAU Robotics Center, Korea Aerospace University)
  • 이정훈 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 김영호 (한국항공대학교, KAU Robotics Center) ;
  • 김영근 (한국항공대학교, 항공우주 및 기계공학부) ;
  • 김병규 (한국항공대학교, KAU Robotics Center)
  • Received : 2009.12.28
  • Accepted : 2010.03.08
  • Published : 2010.03.31

Abstract

A high-throughput sorting (HTS) system has been designed to separate target particles using a negative dielectrophoretic (n-DEP) force. The system consists of a meso-sized channel and a cantilever-type electrode(CE) array designed to separate a large number of target particles by discerning subtle difference of weight and dielectric material property of the particles. Using the polystyrene beads with various sizes of 10, 25 and $50{\mu}m$, the developed system exhibits high-throughput sorting of about 200 beads/sec and more than 80 % of separation efficiency.

Keywords

References

  1. J. Park, B. Kim, S. K. Choi, S. Hong, S. H. Lee, and K. I. Lee, "An efficient cell separation system using 3D-asymmetric microelectrodes", Lab on a Chip, vol. 5, pp. 1264-1270, 2005. https://doi.org/10.1039/b506803g
  2. U. Kim, Chih-Wen Shu, Karen Y. Dane, Patrick S. Daugherty, Jean Y. J. Wang, and H. T. Soh, "Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis", PNAS, vol. 104, pp. 20708-20712, 2007. https://doi.org/10.1073/pnas.0708760104
  3. M. Boettcher, M. Jaeger, M. Kirschbaum, T. Mueller, T. Schnelle, and C. Duschll "Gravitation-driven stress-reduced cell handling", ABC, vol. 390, pp. 857-863, 2007.
  4. U. Kim and H. Tom Soh "Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic–magnetic activated cell sorter", LapChip, 2009.
  5. Colin Daltona and Karan V.I.S. Kaler "A cost effective, re-configurable electrokinetic microfluidic chip platform", Sensors and actuators B, vol. 123, pp. 628-635, 2007. https://doi.org/10.1016/j.snb.2006.08.036
  6. H. Hwang, D. H. Lee, Wonjae Choi, and J. K. Park "Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force", Biomicrofluidics, vol. 3. 2009.
  7. Malyan, B. and Balachandran, W, "Sub-micron sized biological particle manipulation and characterization", J. Electrostatics, vol. 51-52, pp. 15-19, 2001. https://doi.org/10.1016/S0304-3886(01)00056-0
  8. J. Park, B. Kim, S. K. Choi, S. Hong, S. H. Lee, and K. Lee, "An efficiency cell separation system using 3D-asymmetric microelectrode", lab chip, vol. 5, pp. 1264-1270, 2005. https://doi.org/10.1039/b506803g
  9. J. An, J. Lee, S. Lee, J. Park, and B. Kim, "Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter(DACS)", ABC, vol. 394, pp. 1618-2642, 2009.
  10. L. Cui, D. Holmes, and H. Morgan, "The dielectrophoretic levitation and separation of latex beads in microchips", Electrophoresis, vol. 22, pp. 3893-3901, 2001. https://doi.org/10.1002/1522-2683(200110)22:18<3893::AID-ELPS3893>3.0.CO;2-2
  11. X. B. Wang, Y. Huang, X. J. Wang, F. F. Becker, and P. R. C. Gascoyne, "Dielectrophoretic manipulation of cells with spiral electrodes", Biophysical Journal, vol. 72, pp. 1887-1899, 1997. https://doi.org/10.1016/S0006-3495(97)78834-9
  12. H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels", Langmuir, vol. 24, pp. 4405-4412, 2008. https://doi.org/10.1021/la703581j
  13. J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, and R. H. Austin, "Deterministic hydrodynamics: Taking blood apart", PNAS, 103, pp. 14779-14786, 2006. https://doi.org/10.1073/pnas.0605967103
  14. 최은표, 김병규, 박정열, "다층 버스 바를 이용한 극 한 면적의 진행파 유전영동 미세입자 분류기", 센서 학회지, 제18권, 제2호, pp. 139-146, 2009.
  15. Pethig R, "Dielectric and electronic properties of biological materials", JohnWiley & Sons, Chichester, 1979.
  16. 최성용, 박제균, "유체영동 기반의 입자분리현상을 이용한 세포 크기 측정방법", 센서학회지, 제17권, 제4호, pp. 245-249, 2008. https://doi.org/10.5369/JSST.2008.17.4.245