DOI QR코드

DOI QR Code

THE COMPARISON OF DIFFERENT CANAL IRRIGATION METHODS TO PREVENT REACTION PRECIPITATE BETWEEN SODIUM HYPOCHLORITE AND CHLORHEXIDINE

차아염소산나트륨과 클로르헥시딘의 반응침전물 형성방지를 위한 여러 가지 근관세척 방법의 비교

  • Choi, Moon-Sun (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Se-Hee (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Kyung-Mo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Jin-Woo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University)
  • 최문선 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 박세희 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 조경모 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김진우 (강릉원주대학교 치과대학 치과보존학교실)
  • Received : 2010.02.25
  • Accepted : 2010.03.05
  • Published : 2010.03.31

Abstract

The purpose of this study was to compare the different canal irrigation methods to prevent the formation of precipitate between sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Extracted 50 human single-rooted teeth were used. The root canals were instrumented using NiTi rotary file (Profile .04/#40) with 2.5% NaOCl and 17% EDTA as irrigants. Teeth were randomly divided into four experimental groups and one control group as follows; Control group: 2.5% NaOCl only, Group 1: 2.5% NaOCl + 2% CHX, Group 2: 2.5% NaOCl + paper points + 2% CHX, Group 3: 2.5% NaOCl + preparation with one large sized-file + 2% CHX, Group 4: 2.5% NaOCl +95% alcohol+ 2% CHX. The teeth were split in bucco-lingual aspect and the specimens were observed using Field Emission Scanning Electron Microscope. The percentages of remaining debris and patent dentinal tubules were determined. Statistical analysis was performed with one-way analysis of variance (ANOVA). Energy Dispersive x-ray Spectroscopy was used for analyzing the occluded materials in dentinal tubule for elementary analysis. There were no significant differences in percentage of remaining debris and patent tubules between all experimental groups at all levels (p > .05). In elementary analysis, the most occluded materials in dentinal tubule were dentin debris. NaOCl/CHX precipitate was detected in one tooth specimen of Group 1. In conclusion, there were no significant precipitate on root canal, but suspected material was detected on Group 1. The irrigation system used in this study could be prevent the precipitate formation.

이 실험의 목적은 NaOCl과 CHX의 혼합사용 시, 발생하는 침전물의 형성을 막기 위해 두 용액간의 접촉을 줄일 수 있는 여러 가지 방법을 비교하고, 관찰된 침전물의 원소를 분석하는 것이다. 발거된 50개의 단근치를 사용하였으며 2.5% NaOCl을 이용하여 .04 taper ProFile #40까지 근관형성 하였다. 치아는 다음과 같은 근관세척 방법에 따라 4개의 실험군과 1개의 대조군으로 나누었다; 대조군: 2.5% NaOCl, 1군: 2.5% NaOCl + 2% CHX, 2군: 2.5% NaOCl + paper points + 2% CHX, 3군: 2.5% NaOCl + .04/#45 근관확대 + 2% CHX, 4군: 2.5% NaOCl +95% alcohol+ 2% CHX. 근관세척 후 치아를 양분하고 치관부, 중간부, 치근부 세부위로 나누어 전계 방사형 주사 전자현미경을 통하여 잔사 비율, 개방 상아세관 비율, 상아세관 내 물질의 원소분석을 시행하였다. 실험결과, 실험군 사이에 잔사비율과 개방된 상아세관 비율 비교에서 통계학 적으로 유의할 만한 차이는 나타나지 않았다. 1 군의 한 시편에서 C의 함유량이 높게 나타났으며 N과 Cl도 함께 검출되어 para-chloraniline으로 추정되며, 1 군의 다른 시편과 나머지 실험군에서는 O, P, C, Ca의 순으로 함유량이 높은 것으로 나타나 수산화인회석으로 추정된다. NaOCl 세척 후 바로 CHX 세척을 한 군에서 PCA로 의심되는 물질이 검출된 바, 두 용액의 직접적인 접촉을 피하기 위해 주의가 필요하며, 본 실험에 사용된 여러 근관 세척방법 이용 시 침전물의 형성을 예방할 수 있을 것이다.

Keywords

References

  1. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposure of dental pulps in germ-free and conventional laboratory rats. Oral Surg, Oral Med, Oral Pathol 20:340-348, 1965. https://doi.org/10.1016/0030-4220(65)90166-0
  2. Basrani BR, Manek S, Fillery E. Using diazotization to characterize the effect of heat or sodium hypochlorite on 2.0% chlorhexidine. J Endod 35:1296-1299, 2009. https://doi.org/10.1016/j.joen.2009.05.037
  3. Peters OA, Laib A, Gohring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high resolution computed tomography. J Endod 27:1-6, 2001. https://doi.org/10.1097/00004770-200101000-00001
  4. Bystrom A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res 89:321-328, 1981.
  5. Wu MK, van der Sluis LW, Wesselink PR. The capability of two hand instrumentation techniques to remove the inner layer of dentin in oval canals. Int Endod J 36:218-224, 2003. https://doi.org/10.1046/j.1365-2591.2003.00646.x
  6. Siqueira JF, Machado AG, Silveirab RM, Lopes HP, Uzed MD. Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J 30:279-282, 1997. https://doi.org/10.1111/j.1365-2591.1997.tb00708.x
  7. Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol 6:142-149, 1990. https://doi.org/10.1111/j.1600-9657.1990.tb00409.x
  8. Park JH. The effect of solvent action of sodium hypochlorite solution on pulp tissue. Journal of Korean Academy of Conservative Dentistry 8:115-122, 1982.
  9. Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod 30:785-787, 2004. https://doi.org/10.1097/00004770-200411000-00009
  10. Siqueira JF, Batista MMD, Fraga RC, Milton de Uzeda. Antibacterial effects of endodontic irrigants on black-pigmented gram-negative anaerobes and facultative bacteria. J Endod 24:414-416, 1998. https://doi.org/10.1016/S0099-2399(98)80023-X
  11. Turkun M, Cengiz T. The effects of sodium hypochlorite and calcium hydroxide on tissue dissolution and root canal cleanliness. Int Endod J 30:335-342, 1997. https://doi.org/10.1111/j.1365-2591.1997.tb00720.x
  12. O’Hoy PYZ, Messer HH, Palamara JEA. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J 36:724-732, 2003. https://doi.org/10.1046/j.1365-2591.2003.00709.x
  13. Hulsmann M, Hahn W. Complications during root canal irrigation-literature review and case reports. Int Endod J 22:186-193, 2000.
  14. Pashley EL, Birdsong NL, Bowman K, Pashley DH. Cytotoxic effects of NaOCl on vital tissue. J Endod 11:525-528, 1985. https://doi.org/10.1016/S0099-2399(85)80197-7
  15. Ehrich DG, Walker WA. Sodium hypochlorite accident: inadvertent injection into the maxillary sinus. J Endod 19:180-182, 1993. https://doi.org/10.1016/S0099-2399(06)80684-9
  16. Jenkins S, Addy M, Wade W. The mechanism of action of chlorhexidine : A study of plaque growth on enamel inserts in vivo. J clin perio 15:415-424, 1988. https://doi.org/10.1111/j.1600-051X.1988.tb01595.x
  17. Oncag O, Hosgor M, Hilmioglu S, Zekioglu O, Eronat C. Burhanoglu D. Comparison of antibacterial and toxic effects of various root canal irrigants. Int Endod J 36:423-432, 2003. https://doi.org/10.1046/j.1365-2591.2003.00673.x
  18. Kim HJ, Park SH, Cho KM, Kim JW. Evaluation of time-dependent antimicrobial effect of sodium duchloroisocyanurate (NaDCC) on E. faecalis in the root canal. Journal of Korean Academy of Conservative Dentistry 32:121-129, 2007. https://doi.org/10.5395/JKACD.2007.32.2.121
  19. Yesilsoy C, Whitaker E, Cleveland D, Phillips E, Trope M. Antimicrobial and toxic effects of established and potential root canal irrigants. J Endod 21:513-515, 1995. https://doi.org/10.1016/S0099-2399(06)80524-8
  20. Gomes-Filho JE, Aurelio KG, Costa MMTM, Bernabe PFE. Comparison of the biocompatibility of different root canal irrigants. J Appl Oral Sci 16:137-144, 2008. https://doi.org/10.1590/S1678-77572008000200011
  21. Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine in endodontics. Int Endod J 42:288-302, 2009. https://doi.org/10.1111/j.1365-2591.2008.01540.x
  22. Clegg MS, Britto LR. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J Endod 32:434-437, 2006. https://doi.org/10.1016/j.joen.2005.07.002
  23. Dunavant TR, Honeyman AL. Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. J Endod 32:527-531, 2006. https://doi.org/10.1016/j.joen.2005.09.001
  24. Zehnder M. Root canal irrigants. J Endod 32:389-398, 2006. https://doi.org/10.1016/j.joen.2005.09.014
  25. Kuruvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined as endodontic irrigants. J Endod 24:472-476, 1998. https://doi.org/10.1016/S0099-2399(98)80049-6
  26. Basrani B, Manek S, Sodhi RN, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod 33:966-969, 2007. https://doi.org/10.1016/j.joen.2007.04.001
  27. Bui TB, Baumgartner JC, Mitchell JC. Evaluation of the interaction between Sodium hypochlorite and chlorhexidine gluconate and its effect on root dentin. J Endod 34:181-185, 2008. https://doi.org/10.1016/j.joen.2007.11.006
  28. Vivacqua-Gomes N, Ferraz CC, Gomes BP, Zaia AA, Teixeira FB. Influence of irrigants on the coronal microleakage of laterally condensed gutta-percha root fillings. Int Endod J 35:791-795, 2002. https://doi.org/10.1046/j.1365-2591.2002.00569.x
  29. Marchesan MA, Pasternak B Jr, Freitas Afonso MM, Sousa-Neto MD, Paschoalato C. Chemical analysis of the flocculate formed by the association of sodium hypochlorite and chlorhexidine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:e103-e105, 2007. https://doi.org/10.1016/j.tripleo.2006.11.008
  30. Shin JS, Cho YB. Removal patterns of smear layer according to application temperature and time of EDTA. Journal of Korean Academy of Conservative Dentistry 27:535-542, 2002. https://doi.org/10.5395/JKACD.2002.27.5.535
  31. Rasimick BJ, Nekich M, Hladek MM, Musikant BL, Deutsch AS. Interaction between chlorhexidine digluconate and EDTA. J Endod 34:1521-1523, 2008. https://doi.org/10.1016/j.joen.2008.08.039
  32. Zamany A, Safavi K, Spangberg LSW. The effect of chlorhexidine as an endodontic disinfectant. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:578-581, 2003. https://doi.org/10.1016/S1079-2104(03)00168-9
  33. Jeansinne MJ, White RR. A Comparison of 2.0% Chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-278, 1994. https://doi.org/10.1016/S0099-2399(06)80815-0
  34. Khademi AA, Mohammadi Z, Havaee A. Evaluation of the antibacterial substantivity of several intra-canal agents. Aust Endod J 32:112-115, 2006. https://doi.org/10.1111/j.1747-4477.2006.00033.x
  35. Rosenthal S, Spangberg L, Safavi KE. Chlorhexidine substantivity in root canal dentine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:488-492, 2004. https://doi.org/10.1016/j.tripleo.2003.07.005
  36. Leonardo MR, Bonifacio KC. In vivo antimicrobial activity of 2% chlorhexidine used as a root canal irrigating solution. J Endod 25:167-171, 1999. https://doi.org/10.1016/S0099-2399(99)80135-6
  37. Okazaki Y. Yamashita K, Ishii H, Sudo M, Tsuchitani M. Potential of neurotoxicity after a single oral dose of 4-Bromo-, 4-Chloro-, 4- Fluiri- or 4-Iodoaniline in Rats. J Appl Toxicol 23:315-322, 2003. https://doi.org/10.1002/jat.921
  38. Lopez FU, Fachin EV, Camargo Fontanella VR, Barletta FB, SoMV, Grecca FS. Apical transportation: a comparative evaluation of three root canal instrumentation techniques with three different apical diameters. J Endod 34:1545-8, 2008. https://doi.org/10.1016/j.joen.2008.07.027
  39. Wilcox LR. Wiemann AH. Effect of a final alcohol rinse on sealer coverage of obturated root canals. J Endod 21:256-258, 1995. https://doi.org/10.1016/S0099-2399(06)80992-1
  40. Hafner B. Energy Dispersive Spectroscopy on the SEM: A Primer. Characterization Facility, University of Minnesota, 1-26, 2006

Cited by

  1. Analysis of para-chloroaniline after chemical interaction between alexidine and sodium hypochlorite using mass spectrometry: A preliminary study vol.35, pp.4, 2010, https://doi.org/10.5395/JKACD.2010.35.4.295