Electroless Nickel Plating on Porous Carbon Substrate

다공성 탄소전극기지상의 무전해 니켈도금에 관한 연구

  • Chun, So-Young (Dept. of Materials Science and Engineering, Hongik University) ;
  • Rhyim, Young-Mok (Dept. of Materials Test and Characterization Group, Korea Institute of Materials Science) ;
  • Kim, Doo-Hyun (Dept. of Materials Test and Characterization Group, Korea Institute of Materials Science) ;
  • Lee, Jae-Ho (Dept. of Materials Science and Engineering, Hongik University)
  • 천소영 (홍익대학교 신소재공학과) ;
  • 임영목 (한국재료연구소 재료특성평가그룹) ;
  • 김두현 (한국재료연구소 재료특성평가그룹) ;
  • 이재호 (홍익대학교 신소재공학과)
  • Received : 2010.02.16
  • Accepted : 2010.03.20
  • Published : 2010.03.30

Abstract

Electroless nickel plating on porous carbon substrate was investigated. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}$ to less than $20^{\circ}$ after ammonia pretreatment. The content of phosphorous in nickel deposit was decreased with increasing pH and then deposits became crystallized. The thickness of nickel deposit was increased with increasing pH. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 5 ppm and the thickness of nickel was not significantly affected by the concentration of $PdCl_2$.

다공성 탄소전극기지 위의 무전해 니켈도금에 관한 연구를 하였다. 다공성 탄소전극기지로는 다공도가 20 ${\mu}m$ 이상인 것과 16~20 ${\mu}m$ 인 것을 사용하였다. 소수성인 탄소 표면은 $60^{\circ}C$ 이상의 암모니아 용액에 침적함으로써 그 표면 성질이 친수성으로 변화 되었고, 40분 이상 침적 시 접촉각이 $20^{\circ}$ 이하까지 측정 되었다. 도금욕의 pH가 증가됨에 따라 탄소기지 위에 도금된 니켈 도금층의 인의 석출량은 감소하였으며 니켈 도금층이 결정질 구조를 갖는 현상이 관찰되었다. 도금층의 두께는 pH가 증가함에 따라 증가하였다. 활성화 처리를 위한 $PdCl_2$의 농도에 따른 도금층의 두께 변화는 없었으나, 도금에 필요한 $PdCl_2$의 최소농도는 5 ppm 이상인 것으로 나타났다.

Keywords

References

  1. K.S. Lee, H.H Cho, "Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics", J. of the Kor. Electrochem. Soc., 8(4), 155 (2005). https://doi.org/10.5229/JKES.2005.8.4.155
  2. J. Larminie, A. Dicks, "Fuel Cell Systems Explained", 2nd ed., pp. 187-201, Willey (2003).
  3. J.H. Lee, I.G. Lee, T. Kang, N.S. Kim, S.Y. Oh, "Electrochemical Study of UBM Ni prepared by Electroless Plating", J. Microelectron. Packag. Soc., 10(2), 118 (2003).
  4. I.H. Jee, "Studies on Characteristics of Electroless Copper Plating for ULSI Conducting Layer Application", p.40, Hongik University, Seoul (2000).
  5. J.I. Park, J.W. Kim, J.S. Lee, "Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell", J. Korean Ind. & Eng. Chem., 1(2), 224 (1990).
  6. K.R. Kull, M.L.Steen, E.R.Fisher, "Surface Modification with Nitrogen-Containing Plasmas to Produce Hydrophilic, Lowfouling Membranes", J. Membrane Sci., 246, 203 (2005). https://doi.org/10.1016/j.memsci.2004.08.019
  7. N.I. Kim, S.S. Jang, Electroless plating, pp. 3-20 DongHwa Technology publishing Co., (1996).
  8. J.S. Kim, E.K. Hur, "Thermal and Adhesive Properties of Cu Interconnect Deposited by Electroless Plating", J. Microelectron. Packag. Soc., 8(2), 100 (2001).
  9. K. K. Kar, D. Sathiyamoorthy, "Influence of Process Parameters for Coating of Nickel-Phosphorous on Carbon Fibers", J. of Materials Processing Technology, 209, 3022 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.006
  10. X.C. Wang, W.B. Cai, W.J. Wang, H.T. Liu, Z.Z. Yu, "Effects of Ligands on Electroless Ni-P Alloy Plating from Alkaline Citrate-Ammonia Solution", Surface and Coatings Technology, 168, 300 (2003). https://doi.org/10.1016/S0257-8972(03)00013-6
  11. F. Wang, S. Arai, M. Endo, "The Preparation of Multi-walled Carbon Nanotubes with a Ni-P Coating by an Electroless Deposition Process", Carbon, 43, 1716 (2005). https://doi.org/10.1016/j.carbon.2005.02.015