DOI QR코드

DOI QR Code

THE NEHARI MANIFOLD APPROACH FOR DIRICHLET PROBLEM INVOLVING THE p(x)-LAPLACIAN EQUATION

  • Mashiyev, Rabil A. (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY) ;
  • Ogras, Sezai (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY) ;
  • Yucedag, Zehra (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY) ;
  • Avci, Mustafa (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DICLE UNIVERSITY)
  • Received : 2008.10.07
  • Published : 2010.07.01

Abstract

In this paper, using the Nehari manifold approach and some variational techniques, we discuss the multiplicity of positive solutions for the p(x)-Laplacian problems with non-negative weight functions and prove that an elliptic equation has at least two positive solutions.

Keywords

Acknowledgement

Supported by : Dicle University

References

  1. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
  2. G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, The Nehari manifold for p-Laplacian equation with Dirichlet boundary condition, Nonlinear Anal. Model. Control 12 (2007), no. 2, 143-155.
  3. A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
  4. K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), no. 2, 481-499. https://doi.org/10.1016/S0022-0396(03)00121-9
  5. O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variation inequality with variable exponent of nonlinearity, Nonlinear Anal. 10 (2009), 2325-2331.
  6. J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), no. 2, 604-618. https://doi.org/10.1016/j.jmaa.2004.10.028
  7. L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph. D. thesis, University of Frieburg, Germany, 2002.
  8. D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293. https://doi.org/10.4064/sm-143-3-267-293
  9. A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30-42. https://doi.org/10.1016/j.jmaa.2004.05.041
  10. X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464-477. https://doi.org/10.1016/j.jmaa.2005.03.057
  11. X. L. Fan, J. S. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618
  12. X. L. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
  13. X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  14. X. L. Fan, Q. Zhang, and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
  15. T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761-766. https://doi.org/10.1126/science.258.5083.761
  16. P. Harjulehto, P. Hasto, M. Koskenoja, and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), no. 3, 205-222. https://doi.org/10.1007/s11118-006-9023-3
  17. P. Hasto, The p(x)-Laplacian and applications, J. Anal. 15 (2007), 53-62.
  18. O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
  19. R. A. Mashiyev, Some properties of variable Sobolev capacity, Taiwanese J. Math. 12 (2008), no. 3, 671-678. https://doi.org/10.11650/twjm/1500602428
  20. M. Mihailescu, Existence and multiplicity of solutions for an elliptic equation with p(x)-growth conditions, Glasg. Math. J. 48 (2006), no. 3, 411-418. https://doi.org/10.1017/S0017089506003144
  21. M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. https://doi.org/10.1098/rspa.2005.1633
  22. M. Mihailescu and V. Radulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937. https://doi.org/10.1090/S0002-9939-07-08815-6
  23. S. Ogras, R. A. Mashiyev, M. Avci, and Z. Yucedag, Existence of solutions for a class of elliptic systems in $R^N$ involving the (p(x), q(x))-Laplacian, J. Inequal. Appl. 2008 (2008), Art. Id 612938, 16 pp.
  24. M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Springer Lecture Notes in Math. Vol. 1748, Springer Verlag, Berlin, Heidelberg, New York, 2000.
  25. N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. https://doi.org/10.1002/cpa.3160200406
  26. T. F. Wu, Multiplicity of positive solution of p-Laplacian problems with sign-changing weight functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 9-12, 557-563.
  27. X. Zhang and X. Liu, The local boundedness and Harnack inequality of p(x)-Laplace equation, J. Math. Anal. Appl. 332 (2007), no. 1, 209-218. https://doi.org/10.1016/j.jmaa.2006.10.021
  28. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877.

Cited by

  1. Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition vol.57, pp.5, 2012, https://doi.org/10.1080/17476933.2011.598928
  2. On a PDE Involving the Variable Exponent Operator with Nonlinear Boundary Conditions vol.12, pp.3, 2015, https://doi.org/10.1007/s00009-014-0424-z
  3. Correction to: On a PDE Involving the Variable Exponent Operator with Nonlinear Boundary Conditions vol.15, pp.1, 2018, https://doi.org/10.1007/s00009-017-1049-9