DOI QR코드

DOI QR Code

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds

접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향

  • Kim, Jae-Won (School of Material Science and Engineering, Andong National University) ;
  • Jeong, Myeong-Hyeok (School of Material Science and Engineering, Andong National University) ;
  • Jang, Eun-Jung (School of Material Science and Engineering, Andong National University) ;
  • Park, Sung-Cheol (School of Material Science and Engineering, Andong National University) ;
  • Cakmak, Erkan (EV Group) ;
  • Kim, Bi-Oh (EV Group) ;
  • Matthias, Thorsten (EV Group) ;
  • Kim, Sung-Dong (Mechanical design and automation engineering, Seoul National University of Technology (SNUT) & Seoul Technopark) ;
  • Park, Young-Bae (School of Material Science and Engineering, Andong National University)
  • 김재원 (안동대학교 신소재공학부) ;
  • 정명혁 (안동대학교 신소재공학부) ;
  • 장은정 (안동대학교 신소재공학부) ;
  • 박성철 (안동대학교 신소재공학부) ;
  • ;
  • ;
  • ;
  • 김성동 (서울산업대학교 기계설계자동화공학부 및 서울테크노파크) ;
  • 박영배 (안동대학교 신소재공학부)
  • Received : 2010.05.25
  • Accepted : 2010.06.07
  • Published : 2010.06.27

Abstract

3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

Keywords

References

  1. G. T. Lim, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Jooand Y. B. Park, J. Microelectron. Packag. Soc., 15(4), 17(2008).
  2. E. J. Jang, S. Pfeiffer, B. Kim, T. Matthias, S. Hyun, H.J. Lee and Y. B. Park, Kor. J. Mater. Res., 18(4), 204(2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.4.204
  3. J. Yu and J. Y. Kim, Acta Mater., 56(19), 5514 (2008). https://doi.org/10.1016/j.actamat.2008.07.022
  4. C. H. Yun, J. R. Martin, E. B. Tarvin and J. T. Winbigler,in Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems (Tucson, AZ, USA, Jan., 2008), p. 810.
  5. K. N. Chen, C. S. Tan, A. Fan and R. Reif, J. Electron. Mat., 34, 1464 (2005). https://doi.org/10.1007/s11664-005-0151-0
  6. H. Zhenyu, Z. Suo, X. Guanghai, H. Jun, J. H. Prevostand N. Sukumar, Eng. Fract. Mech., 72, 2584 (2005). https://doi.org/10.1016/j.engfracmech.2005.04.002
  7. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, Eng. Fract. Mech., 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  8. P. G. Charalambides, J. Lund, A. G. Evans and R. M.McMeeking, J. Appl. Mech., 111, 77 (1989).
  9. K. N. Chen, S. M. Chang, L. C. Shen and R. Reif, J. Electron. Mat., 35, 1082 (2006). https://doi.org/10.1007/BF02692570
  10. R. Tadepalli, Ph. D. Thesis, p 5-68, Massachuesetts Institute of Technology, USA (2006).
  11. Le P. -Thiveta, C. Malibert, Ph. Houdy and P. A. Albouy,Thin Solid Films, 336, 373 (1998) https://doi.org/10.1016/S0040-6090(98)01288-7
  12. J. Robertson, J. Vac. Sci. Technol., B18, 1785 (2000).
  13. J. A. Rotoler and P. M. A. Sherwood, Surf. Sci. Spectra,5, 4 (1998). https://doi.org/10.1116/1.1247850
  14. D. R. Gaskell, Introduction to the thermodynamics of materials, 4th ed., p.645, Taylor and Francis, USA (2004).