DOI QR코드

DOI QR Code

Thermomechanical Characteristics of SMAs with Strain-rate Dependence

변형률 효과를 고려한 형상기억합금의 열-기계적 특성

  • 노진호 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2009.08.10
  • Accepted : 2010.01.22
  • Published : 2010.02.01

Abstract

The influence of the strain-rate on the thermomechanical characteristics of shape memory alloys (SMAs) is numerically investigated. The three-dimensional SMA constitutive equations of strain-rate effect is developed. The strain-rate effect is taken into account by introducing a coupling equation between the production rate of martensite and the temperature change. For the numerical results, the SMA algorithm is implemented into the ABAQUS finite element program. Numerical simulation shows that the pseudoelasticity of SMA may significantly be changed by considering the strain-rate due to the temperature change.

변형률-속도에 따른 형상기억합금의 열-기계적 특성 변화를 수치적으로 살펴보았다. 변형률 효과를 고려한 형상기억합금 수학 모델을 유도하였고, 해석 알고리즘을 ABAQUS 상용 프로그램에 적용하여 형상기억합금의 열-기계적 특성을 예측하였다. 마르텐사이트 상 변화량과 온도 변화사이의 연성된 열역학적 방정식을 적용하여, 변형률-속도에 따른 형상기억합금의 거동 특성을 살펴보았다. 변형률 효과를 고려함에 따라 형상기억합금의 의탄성 이력 특성이 크게 영향을 받음을 수치해석 결과를 통하여 알 수 있었다.

Keywords

References

  1. Roh, J. -H., Han, J. -H., Lee, I., "Nonlinear Finite Element Simulation of Shape Adaptive Structures with SMA Strip Actuator", Journal of Intelligent Material Systems and Structures, Vol. 17, 2006, pp. 1007-1022. https://doi.org/10.1177/1045389X06063084
  2. Roh, J. -H., Kim, E. -H., Lee, I., "Low Velocity Impact Behaviors of Composite Structures with Embedded Shape Memory Alloy Films", 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, 2008.
  3. Hill, J., Roh, J. -H., Wang, K. -W., "Position Control of Shape Memory Alloy Actuators with Load and Frequency Dependent Hysteresis Characteristics", SPIE International Symposium Smart Structures and Materials, 2009.
  4. Entemeyer, D, Patoor, E., Eberhardt, A., and Berveiller, M., "Strain Rate Sensitivity in Superelasticity", International Journal of Plasticity, Vol. 16, 2000, pp. 1269-1288. https://doi.org/10.1016/S0749-6419(00)00010-3
  5. Mukherjee, K., Sircar, S., and Dahotre, N. B., "Thermal Effects Associated with Stress-induced Martensitic Tranformation in a Ti-Ni Alloy", Materials Science and Engineering, Vol. 74, 1985, pp. 75-84. https://doi.org/10.1016/0025-5416(85)90111-9
  6. Tobushi, H., Nakahara, T., Shimeno, Y., and Hashimoto, T., "Low-cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life", Journal of Engineering Materials and Technology, Vol. 122, 2000, pp. 186-191. https://doi.org/10.1115/1.482785
  7. Qidwai, M. A. and Lagoudas, D. C., "Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model using Return Mapping Algorithms", International Journal for Numerical Methods in Engineering, Vol. 47, 2000, pp. 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
  8. Zhu, S., and Zhang, Y., "A Thermomechanical Constitutive Model for Superelastic SMA Wire with Strain-rate Dependence", Smart Materials and Structures, Vol. 16, 2007, pp. 1696-1707. https://doi.org/10.1088/0964-1726/16/5/023

Cited by

  1. Experimental and Numerical Analysis for Superelastic Behaviors of SMAs with Strain-rate Dependence vol.39, pp.1, 2011, https://doi.org/10.5139/JKSAS.2010.39.1.9