DOI QR코드

DOI QR Code

Overexpression of PgSQS1 Increases Ginsenoside Production and Negatively Affects Ginseng Growth Rate in Panax ginseng

  • Shim, Ju-Sun (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Ok-Ran (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Yu-Jin (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Jung-Hye (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Ju-Han (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Jung, Dae-Young (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • In, Jun-Gyo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Beom-Soo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2010.01.11
  • Accepted : 2010.03.11
  • Published : 2010.06.30

Abstract

The medicinal plant Panax ginseng (P. ginseng) contains various phytosterols and bioactive triterpene saponins (ginsenosides). Squalene synthase catalyzes the first committed step in ginsenoside biosynthesis. Transgenic plants of P. ginseng were generated by introducing the squalene synthase gene derived from P. ginseng. Adventitious roots of the transgenic ginseng grew best in B5 medium, and 2 g of inoculum secured an optimal growth rate. Two phytohormones, indolebutyric acid and 1-naphtalene acetic acid, increased root growth and decreased ginsenoside production. Treatment with two selected elicitors, chitosan and jasmonic acid, and a precursor of the isoprenoid pathway, mevalonic acid, enhanced ginsenoside production and retarded ginseng growth rate.

Keywords

References

  1. Briskin DP. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 2000;124:507-514. https://doi.org/10.1104/pp.124.2.507
  2. Kushiro T, Ohno Y, Shibuya M, Ebizuka Y. In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes. Biol Pharm Bull 1997;20:292-294. https://doi.org/10.1248/bpb.20.292
  3. Cui J, Eneroth P, Bruhn JG. Gynostemma pentaphyllum: identification of major sapogenins and differentiation from Panax species. Eur J Pharm Sci 1999;8:187-191. https://doi.org/10.1016/S0928-0987(99)00013-5
  4. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 2003;22:224-230. https://doi.org/10.1007/s00299-003-0678-6
  5. Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 2006;25:599-606. https://doi.org/10.1007/s00299-005-0095-0
  6. Kim SI, Kim JY, Kim EA, Kwon KH, Kim KW, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, et al. Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 2003;3:2379-2392. https://doi.org/10.1002/pmic.200300619
  7. Nam MH, Heo EJ, Kim JY, Kim SI, Kwon KH, Seo JB, Kwon O, Yoo JS, Park YM. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics 2003;3:2351-2367. https://doi.org/10.1002/pmic.200300509
  8. Bloch K. Sterol molecule: structure, biosynthesis, and function.Steroids 1992;57:378-383. https://doi.org/10.1016/0039-128X(92)90081-J
  9. Chappell J. The Biochemistry and Molecular Biology of Isoprenoid Metabolism. Plant Physiol 1995;107:1-6. https://doi.org/10.1104/pp.107.1.1
  10. Abe I, Rohmer M, Prestwich GD. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 1993;93:2189-2206. https://doi.org/10.1021/cr00022a009
  11. Guan G, Dai P, Shechter I. Differential transcriptional regulation of the human squalene synthase gene by sterol regulatory element-binding proteins (SREBP) 1a and 2 and involvement of 5’ DNA sequence elements in the regulation. J Biol Chem 1998;273:12526-12535. https://doi.org/10.1074/jbc.273.20.12526
  12. Kennedy MA, Bard M. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim Biophys Acta 2001;1517:177-189. https://doi.org/10.1016/S0167-4781(00)00246-3
  13. Vogeli U, Chappell J. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 1988;88:1291-1296. https://doi.org/10.1104/pp.88.4.1291
  14. Devarenne TP, Ghosh A, Chappell J. Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 2002;129:1095-1106. https://doi.org/10.1104/pp.001438
  15. Wentzinger LF, Bach TJ, Hartmann MA. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Plant Physiol 2002;130:334-346. https://doi.org/10.1104/pp.004655
  16. Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 2004;45:976-984. https://doi.org/10.1093/pcp/pch126
  17. Aerts RJ, Gisi D, Carolis ED, Luca VD, Baumann TW. Methyl jasmonate vapor increase the developmentally controlled synthesis of alkaloids in Cartharanthus and Cinchona seedlings. Plant J 1994;5:635-643. https://doi.org/10.1111/j.1365-313X.1994.00635.x
  18. Gundlach H, Muller MJ, Kutchan TM, Zenk MH. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 1992;89:2389-2393. https://doi.org/10.1073/pnas.89.6.2389
  19. Ketchum RE, Gibson DM, Croteau RB, Shuler ML. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 1999;62:97-105. https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C
  20. Farmer EE, Caldelari D, Pearce G, Walker-Simmons MK, Ryan CA. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol 1994;106:337-342. https://doi.org/10.1104/pp.106.1.337
  21. Doares SH, Syrovets T, Weiler EW, Ryan CA. Oligogalacturonidesand chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 1995;92:4095-4098. https://doi.org/10.1073/pnas.92.10.4095
  22. Yu KW, Gao W, Hahn EJ, Paek KY. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 2002;11:211-215. https://doi.org/10.1016/S1369-703X(02)00029-3
  23. Yu KW, Gao WY, Son SH, Paek KY. Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C. A. Meyer). In Vitro Cell Dev Biol Plant 2000;36:424-428. https://doi.org/10.1007/s11627-000-0077-4
  24. Choi YE, Yang DC, Kusano T, Sano H. Rapid and efficient Agrobacterium-mediated transformation of Panax ginseng by plasmolyzing pre-treatment of cotyledons. Plant Cell Rep 2001;20:616-621. https://doi.org/10.1007/s002990100377
  25. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962;15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 1968;50:151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  27. Lloyd G, McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 1980;30:421-427.
  28. Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 2008;69:218-224.

Cited by

  1. Expression and stress tolerance of PR10 genes from Panax ginseng C. A. Meyer vol.39, pp.3, 2012, https://doi.org/10.1007/s11033-011-0987-8
  2. vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.189
  3. Triterpenoid Biosynthesis and Engineering in Plants vol.2, pp.None, 2010, https://doi.org/10.3389/fpls.2011.00025
  4. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer) vol.37, pp.2, 2010, https://doi.org/10.5142/jgr.2013.37.227
  5. Plant Metabolic Engineering Strategies for the Production of Pharmaceutical Terpenoids vol.7, pp.None, 2010, https://doi.org/10.3389/fpls.2016.01647
  6. RETRACTED ARTICLE: Homo and heterologous expression of the HpPKS2 gene in Hypericum perforatum and Bacopa monnieri vol.148, pp.1, 2022, https://doi.org/10.1007/s11240-020-01965-5
  7. Ginsenosides accumulation and related genes expression in different underground parts of Panax notoginseng during maturation stage vol.175, pp.None, 2010, https://doi.org/10.1016/j.indcrop.2021.114228