DOI QR코드

DOI QR Code

Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage

낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구

  • Ji, Un (Dept. of Civil and Environmental. Engrg., Myongji Univ.) ;
  • Yeo, Woon-Kwang (Dept. of Civil and Environmental. Engrg., Myongji Univ.) ;
  • Han, Seung-Won (Dept. of Civil and Environmental. Engrg., Myongji Univ.)
  • 지운 (명지대학교 토목환경공학과) ;
  • 여운광 (명지대학교 토목환경공학과) ;
  • 한승원 (명지대학교 토목환경공학과 대학원)
  • Received : 2010.02.04
  • Accepted : 2010.04.28
  • Published : 2010.06.30

Abstract

The effects of the selection for sediment transport equations and advection-diffusion equations according to different sediment transport modes on the modeling results of bed changes were analyzed using the CCHE2D and compared with field data in this paper. The most suitable sediment transport equation and sediment transport mode for advection-diffusion equation were suggested for the upstream approached channel of the Nakdong River Estuary Barrage. The bed changes simulated by the Engelund and Hansen formula were very small in the modeling case for the low and high flow discharges compared with the case of the Ackers and White formula. Also, the numerical modeling with the actual hydraulic event in 2002 presents that the bed change result with the bed load transport type for advection-diffusion equation was close to the field measurement more than the suspended load type.

본 논문에서는 2차원 하상변동 수치모형인 CCHE2D 모형을이용하여 유사량 공식과 유사이송형태별 이류-확산 방정식의 선택이 하상변동 수치모의결과 값에 미치는 영향을 분석하고 실제 현장자료와 비교하였다. 또한 이러한 분석을 기초로 낙동강하구둑 상류 접근수로에서의 최적의 유사량 공식과 유사 이송형태별 이류-확산 방정식을 제안하였다. 낙동강하구둑 상류 접근수로에 대해 Ackers and White와 Engelund and Hansen의 유사량 공식과 소류사와 부유사 유사 이송형태에 따른 이류-확산 방정식을 각각 다르게 적용하여 모의한 결과, Engelund and Hansen 공식을 적용한 경우에는 Ackers and White 공식을 적용한 경우와 비교했을 때, 평수 및 홍수 조건에서 모두 하상변동량이 거의 없는 것으로 나타났다. 또한 Ackers and White 공식으로 2002년에 발생한 실제 수문사상을 적용하여 하상변동 모의한 결과, 소류사 이송형태의 이류-확산 방정식을 적용한 모의결과가 부유사 이송형태를 적용했을 경우 보다 실제 하상변동에 더 근접한 것으로 나타났다.

Keywords

References

  1. 이길성, 이남주(1992), “유사량 산정 공식의 비교 연구.” 대한토목학회 정기학술발표대회.
  2. 한국건설기술연구원(1989). 하천유사량 산정방법의 선정기준 개발, 기본연구과제 보고서, 건기연 89-WR-112.
  3. 한국건설기술연구원(1991). 하상변동 예측모형의 비교분석, 건기연 91-WR-112.
  4. 한국수자원공사(1995). 낙동강하구둑 퇴사 거동 특성에 관한 연구.
  5. 한국수자원공사(2008). 낙동강하구둑 유지관리 개선방안 연구보고서.
  6. Ackers, P., and White, W.R. (1973). “Sediment transport New approach and analysis.” Journal of Hydraulic Div., ASCE, Vol. 99, No. HY11, pp. 2041-2060
  7. ASCE (1982). ASCE Task committee on Relations between Morphology of Small Streams and Sediment Yields of the Committee on Sedimentation of the Hydraulics Division: “Relationships Between Morphology of Small Streams and Sediment Yields.” Journal of Hydraulics Div, ASCE, Vol. 108, No. HY11, Proceeding Paper 17 450, pp. 1328-1365.
  8. Bagnold, R.A. (1966). “An Approach to the Sediment Transport Problem from General Physics.” USGS Proffesional Paper 422-J, Washington, D.C.
  9. Brooks, N.H. (1963). “Calculation of Suspended Load Discharge from Velocity, and Concentration Parameters.” Proceedings of the Federal Interagency Sedimentation Conference, Miscellaneous Publication No. 970, Agricultural Research Service, USDA, Washington, D.C.
  10. Brown, C.B. (1950). “Sediment Transportation.” Engineering Hydraulics, ed. H. Rouse, John Wiley, New York.
  11. Brownlie, W.R. (1981). Prediction of flow depth and sediment discharge in open-channels. Report no. KH-R-43A. Pasadena, California Institute of Technology, W.M. Keck Laboratory.
  12. Colby, B.R., and Hembree, C.H. (1955). “Computations of Total Sediment Discharge Niobrara River Near Cody.” Nebraska, water Supply Paper 1357, U.S. Geological Survey, Washington, D.C.
  13. DuBoys, M.P. (1879). “Le Rhone et les Rivieres a lit affouillable.” Annales de Ponts et Chaussees, SEC, Vol. 18, No. 5, pp. 141-195.
  14. Einstein, H.A. (1942), “Formula for the Transportation of Bed-Load.” Transactions of the ASCE, Vol. 107, pp. 561-573.
  15. Engelund, F., and Hansen, E. (1967). A Monograph on Sediment Transport to Alluvial Streams. Copenhagen, Teknik Vorlag
  16. Garbrecht, J., Kuhnle, R.A., and Alonso, C.V. (1995). “A sediment transport formulation for large channel networks.” Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 517-579
  17. Huang, S.L. (2007). “Effect of Using Different Sediment Transport Formulae and Methods of Computing Manning's Roughness Coefficient on Numerical Modeling of Sediment Transport.” Journal of Hydraulic Research, Vol. 45, No. 3, pp. 347-356. https://doi.org/10.1080/00221686.2007.9521768
  18. ISWACO-NEDECO(1987). Nakong River Estuary Barrage and Reclamation Project: Operation Manual. Republic of Korea Industrial Sites and Water Resources Development Corporation and Netherlands Engineering Consultants, Busan, Korea.
  19. Ji, U. (2006). Numerical Model for Sediment Flushing at the Nakdong River Estuary Barrage. Ph.D. Dissertation, Colorado State University, Fort Collins, CO.
  20. Kalinske, A.A. (1947). “Movement of Sediment as Bed Load in Rivers.” Transactions, American Geophysical Union, Vol. 28, No. 4, Washington, D.C.
  21. Lane, E.W., and Kalinske, A.A. (1941). “Engineering Calculations of Suspended sediment.” Transactions of the American Geophysical Union, Vol. 20, No. 3, pp. 603-607.
  22. Meyer-Peter, E., Favre, H., and Einstein, A. (1934). “Neuere Versuchsresultate uber ded Geschiebetrieb.” Schweiz Bauzeitung, Vol. 103, No. 13.
  23. Meyer-Peter, E., and Müller, R. (1948). “Fomula for bed-load transport.” Proceedings of International Association for Hydraulic Research, 2nd Meeting, Stockholm.
  24. Nakato, T. (1990). “Test of Selected Sediment Transport Formulas.” Journal of Hydraulic Eng., ASCE, Vol. 116, No. 3, pp. 362-379. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:3(362)
  25. Schoklitsch, A. (1934). Handbuch des Wasserbaues, Springer, Vienna, 2nd ed., English Translation by S. Shulits.
  26. Shen, H.W., and Hung, C.S. (1972). An Engineering approach to total bed-material load by regression analysis. Proceeding Sedimentation Symposium, ed. H.W. Shen Berkeley, Calif: Water Resources pub. Chap 14. Remodified Einstein Procedure for sediment load. Journal of Hydraulic Div., ASCE, 109, No. 4,
  27. Shields, A. (1936). “Anwendung der Ahnlichkeitsmechanik und Turbulenz forschung auf die Geschiebebewegung.” Mitteil. Preuss. Versuchsanst. Wasser, Erd, Schiffsbau, Berlin, No. 26.
  28. Toffaleti, F.B. (1969). “Definitive computations of sand discharge in rivers.” Journal of the Hydraulics Division, ASCE, Vol. 95 (HY1), pp. 225-246.
  29. White, W.R., Milli, H., and Crabbe, A.D. (1973). “Hydraulics Research Station, Report no, IT 119, Wallingford, U.K.” Sediment Transport: An Appraisal Method, Vol. 2, Perormance of Theoretical Methods, When Applied to Flume and Field Data.
  30. Wu, W. (2001). “CCHE2D Sediment Transport Model (Version 2.1).” National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS, USA.
  31. Wu, W. (2002). “Computational River Dynamics.” National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS, USA.
  32. Wu, W., Wang, S.S.Y., and Jia, Y. (2000). “Nonuniform Sediment Transport in Alluvial River.” Journal of Hydraulic Research, IAHR, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296
  33. Yang, C.T. (1973). “Incipient motion and sediment transport.” Journal of Hydraulic Div., ASCE, Vol. 99, No. HY10: pp. 1679-1704.
  34. Zeng, J., Constantinescu, G., and Weber, L. (2006). “Prediction of Equlibrium Flow and Bed Load Transport in a Curved Bend.” World Environmental and Water Rescources Congress, ASCE, pp. 1-11.

Cited by

  1. Long-term Bed Change Analysis and Equilibrium Bed Elevation Prediction after Weir Construction in Nakdong River vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.7089
  2. Sedimentation Characteristics and Prediction of Riverbed Variation of the Lower Naeseong Stream Considered SS Concentration vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.287
  3. An Analysis of Bed Change Characteristics by Bed Protection Work vol.35, pp.4, 2015, https://doi.org/10.12652/Ksce.2015.35.4.0821
  4. Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea vol.31, pp.3, 2016, https://doi.org/10.1016/j.ijsrc.2016.02.001
  5. Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River vol.15, pp.3, 2014, https://doi.org/10.5762/KAIS.2014.15.3.1756
  6. Analysis of Flow and Bed Change on Hydraulic Structure using CCHE2D : Focusing on Changnyong-Haman vol.46, pp.7, 2013, https://doi.org/10.3741/JKWRA.2013.46.7.707
  7. A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models vol.44, pp.12, 2011, https://doi.org/10.3741/JKWRA.2011.44.12.975
  8. The Study of Bed Change and Stability Depending on Hydraulic Structure vol.13, pp.3, 2013, https://doi.org/10.9798/KOSHAM.2013.13.3.157
  9. Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model vol.33, pp.6, 2013, https://doi.org/10.12652/Ksce.2013.33.6.2211