DOI QR코드

DOI QR Code

Lipolytic Effect of Methanol Extracts from Luffa cylindrica in Mature 3T3-L1 Adipocytes

분화된 3T3-L1 세포에서 수세미오이 메탄올 추출물의 지방분해 효과

  • 차승윤 (경희대학교 의학영양학과) ;
  • 장자영 (경희대학교 의학영양학과) ;
  • 이유현 (수원대학교 식품영양학과) ;
  • 이규옥 (전남대학교 식품영양학과) ;
  • 이호준 (한국식품연구원) ;
  • 황권택 (남부대학교 식품영양학과) ;
  • 김용재 (전남대학교 식품영양학과) ;
  • 전우진 (전남대학교 식품영양학과) ;
  • 이정민 (경희대학교 임상영양연구소)
  • Received : 2010.04.15
  • Accepted : 2010.05.12
  • Published : 2010.06.30

Abstract

The intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to the control, lipid accumulation was significantly decreased by 19.4% with the treatment of LCM at the concentration of $1000\;{\mu}g$/mL. Intracellular triglyceride (TG) level was also reduced by 21% at the concentration of $1000\;{\mu}g$/mL. To determine the mechanism for the reduction in TG content, levels of glucose uptake and glycerol release were measured. Incubation of the 3T3-L1 adipocytes with LCM did not affect the cellular uptake of glucose. However, the level of free glycerol released into the cultured medium drastically increased by 24.3% with the treatment of LCM. In subsequent measurements using quantitative real-time PCR, mRNA levels of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) except lipoprotein lipase (LPL) were significantly elevated at higher concentration. These results suggest that LCM partially stimulates the lipolysis through the induction of HSL and/or ATGL gene expression, resulting in the reduced lipid accumulation and increased glycerol release.

분화된 3T3-L1 지방세포에서 수세미오이의 메탄올 추출물이 지방의 축적 및 분해에 미치는 영향을 확인하였다. 수세미오이의 메탄올 추출물 안전범위(0~1000 ${\mu}g$/mL)에서 지방대사 관련한 여러 과정을 확인한 결과 $600\;{\mu}g$/mL 이상의 농도에서 세포 내 지방축적이 억제되었고 특히 지방구내의 triglyceride 함량이 억제되는 것으로 나타났다. 이러한 결과에 대한 기전을 위해 포도당의 유입 억제로 인한 세포내 triglyceride의 합성감소와 지방분해효소의 활성화로 인한 세포 내 triglyceride의 분해 증가의 두 가지로 확인하였다. 우선적으로 수세미오이의 메탄올 추출물의 포도당 유입 억제 효과를 실험하였지만 아무런 영향이 나타나지 않았다. 하지만 지방분해효소 중 LPL을 제외한 HSL과 ATGL의 유전자 발현이 증가됨에 따라 세포 내 triglyceride이 지방산과 glycerol로 분해되었을 것으로 생각되며 이러한 결과는 세포외로 유리된 glycerol의 함량이 수세미오이의 메탄올 추출물 $1000\;{\mu}g$/mL의 농도에서 증가한 것을 통해 재확인할 수 있었다. 하지만 $600\;{\mu}g$/mL의 농도에서 triglyceride 분해는 촉진되었으나 glycerol의 유리가 유의적으로 나타나지 않은 것은 세포 내에서 분해된 glycerol의 일부가 세포 내 생합성에 재사용되었을 것으로 생각되며 실제 세포 외로 유리된 양을 확인하기 위해서는 보다 높은 농도가 필요한 것으로 여겨진다. 전반적으로 본 실험에서는 수세미오이의 메탄올 추출물이 분화된 3T3-L1 지방세포에서 지방구의 생성을 억제하였으나 효과 농도가 다른 많은 천연물에 비해 다소 높게 나타남으로써 제약으로서의 생산으로는 제한점이 있을 것으로 생각되는 반면 식품으로서 꾸준히 사용될 경우 항비만 소재로서의 가능성이 있을 것으로 생각된다.

Keywords

References

  1. Spiegelman BM, Flier S. 1996. Adipogenesis and obesity; rounding out the big picture. Cell 87: 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  2. Kopelman PG. 2000. Obesity as a medical problem. Nature404: 635-643. https://doi.org/10.1038/35007508
  3. Visscher TL. 2001. The public health impact of obesity.Annu Rev Publ Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  4. Frayn KN, Karpe F, Fielding BA, Macdonald IA, CoppackSW. 2003. Integrative physiology of human adipose tissue.Int J Obes Relat Metab Disord 27: 875-888. https://doi.org/10.1038/sj.ijo.0802326
  5. Holm C. 2003. Molecular mechanisms regulating hormonesensitive lipase and lipolysis. Biochem Soc Trans 31: 1120-1124. https://doi.org/10.1042/BST0311120
  6. Halle M, Berg A, Northoff H, Keul J. 1998. Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise. Exerc Immunol Rev 4: 77-94.
  7. Akter MH, Yamaguchi T, Hirose F, Osumi T. 2008. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor alpha. Biochem Biophys Res Commun 368: 563-568. https://doi.org/10.1016/j.bbrc.2008.01.102
  8. Baillie GS. 2009. Compartmentalized signaling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases.FEBS J 276: 1790-1799. https://doi.org/10.1111/j.1742-4658.2009.06926.x
  9. Fushiki H, Hayakawa Y, Gomori A, Seo T, Tewari S, OzakiS, Yoshimoto R. 2010. In vivo imaging of obesity-induced inflammation in adipose tissue. Biochem Biophys Res Commun391: 674-678. https://doi.org/10.1016/j.bbrc.2009.11.119
  10. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G,Meyer C, Rozman J, Heldmaier G, Maier R, Theussel C,Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G,Zechner R. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312: 734-737. https://doi.org/10.1126/science.1123965
  11. Tabata M, Tanaka S, Cho HJ, Uno C, Shimakura J, Ito M,Kamisako W, Honda C. 1993. Production of an anti-allergic triterpene bryonolic acid, by plant cell cultures. J Nat Prod 56: 165-174. https://doi.org/10.1021/np50092a001
  12. Gao CL, Zhu JG, Zhao YP, Chen XH, Ji CB, Zhang CM,Zhu C, Xia ZK, Peng YZ, Guo XR. 2010. Mitochondrial dysfunction is induced by the overexpression of UCP4 in 3T3-L1 adipocytes. Int J Mol Med 25: 71-80.
  13. Kasugai S, Hasegawa N, Ogura H. 1990. A simple in vito cytotoxicity test using the MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay: analysis of eugenol toxicity on dental pulp cells (RPC-C2A). Jpn J Pharmacol 52: 95-100. https://doi.org/10.1254/jjp.52.95
  14. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D,Steinbuchel A. 1999. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171: 73-80. https://doi.org/10.1007/s002030050681
  15. Pavithra PS, Sreevidya N, Verma RS. 2009. Antibacterial and antioxidant activity of methanol extract of Evolvulus nummularius. Indian J Pharmacol 41: 233-236. https://doi.org/10.4103/0253-7613.58514
  16. Chon JW, Sung JH, Hwang EJ, Park YK. 2009. Chlorella methanol extract reduces lipid accumulation in and increases the number of apoptotic 3T3-L1 cells. Ann N Y Acad Sci 1171: 183-189. https://doi.org/10.1111/j.1749-6632.2009.04895.x
  17. Liu F, Kim J, Li Y, Liu X, Li J, Chen X. 2001. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J Nutr 131: 2242-2247. https://doi.org/10.1093/jn/131.9.2242
  18. Ray H, Pinteur C, Frering V, Beylot M, Large V. 2009.Depot-specific differences in perilipin and hormone-sensitive lipase expression in lean and obese. Lipids Health Dis8: 58. https://doi.org/10.1186/1476-511X-8-58
  19. Knutson VP. 2009. The release of lipoprotein lipase from 3T3-L1 adipocytes is regulated by microvessel endothelial cells in an insulin-dependent manner. Endocrinology 141:693-701. https://doi.org/10.1210/en.141.2.693
  20. Ranganathan G, Unal R, Pokrovskaya I, Yao-Borengasser A, Phanavanh B, Lecka-Czernik B, Rasouli N, Kern PA. 2006. The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J Lipid Res 47: 2444-2449. https://doi.org/10.1194/jlr.M600248-JLR200
  21. Bogan JS, Mckee AE, Lodish HF. 2001. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 21: 4785-4806. https://doi.org/10.1128/MCB.21.14.4785-4806.2001
  22. Czech MP, Corvera. 1999. Signaling mechanisms that regulate glucose transport. J Biol Chem 274: 1865-1868. https://doi.org/10.1074/jbc.274.4.1865
  23. Holman GD, Cushman SW. 1996. Subcellular trafficking of GLUT4 in insulin target cells. Semin Cell Dev Biol 7: 259-268. https://doi.org/10.1006/scdb.1996.0034
  24. Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, OkadaS. 1999. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking: location! location! location! J Biol Chem 274:2593-2596. https://doi.org/10.1074/jbc.274.5.2593
  25. Rea S, James DE. 1997. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46: 1667-1677. https://doi.org/10.2337/diabetes.46.11.1667
  26. Jiang B, Yang Y, Jin H, Shang W, Zhou L, Qian L, ChenM. 2008. Astragaloside IV attenuate lipolysis and improves insulin resistance induced by TNF $\alpha$ in 3T3-L1 adipocytes.Phytother Res 22: 1434-1439. https://doi.org/10.1002/ptr.2434
  27. Moreno-Aliaga MJ, Matsumura F. 1999. Endrin inhibits adipocyte differentiation by selectively altering expression pattern of CCAAT/enhancer binding protein-$\alpha$ in 3T3-L1 cells. Mol Pharmacol 56: 91-101. https://doi.org/10.1124/mol.56.1.91
  28. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G,Birner-Gruenberger R, Riederer M, Lass A, Neuberger G,Eisenhaber F, Hermetter A, Zechner R. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383-1386. https://doi.org/10.1126/science.1100747

Cited by

  1. Effect of intake of sponge gourd (Luffa cylindrica) seed oil and Yukdomok (Chionanthus retusa L.) seed oil on lipid levels of blood and organs of a mice vol.22, pp.3, 2013, https://doi.org/10.1007/s10068-013-0142-5
  2. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation vol.9, pp.12, 2011, https://doi.org/10.3390/md9081359
  3. Anti-Obesity Effect of Crataegus Fructus Extract from Chinese Cultivation vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1586
  4. Antioxidative and Antimutagenic Effects and Hyperplasia Inhibitory Activity of Cancer Cells from Luffa cylindrica Extracts vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.888
  5. Inhibition of Adipogenesis in 3T3-Ll Adipocytes with Water and Ethanol Extracts of Cudrania tricuspidata Leaves vol.18, pp.2, 2011, https://doi.org/10.11002/kjfp.2011.18.2.244
  6. The Effects of Pharmacopuncture(Eugenia caryophyllata THUNB.) on the High Fat Diet-induced Obese ICR Mice vol.30, pp.3, 2013, https://doi.org/10.13045/acupunct.2013007
  7. Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity vol.33, pp.3, 2013, https://doi.org/10.5851/kosfa.2013.33.3.411
  8. Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1681
  9. Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L. vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.281
  10. Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1107
  11. Effects of Fractions from Benincasa hispida on Inhibition of Adipogenesis in 3T3-L1 Preadipocytes vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.895
  12. Optimization Mixture Ratio of Petasites japonicus, Luffa cylindrica and Houttuynia cordata to Develop a Functional Drink by Mixture Design vol.25, pp.3, 2015, https://doi.org/10.5352/JLS.2015.25.3.329
  13. 부처손(Selaginella tamariscina) 추출물의 리파아제 저해 활성 및 지질 축적 억제 효과 vol.32, pp.1, 2010, https://doi.org/10.9799/ksfan.2019.32.1.027
  14. Antiobesity Effects of Extract from Spergularia marina Griseb in Adipocytes and High-Fat Diet-Induced Obese Rats vol.12, pp.2, 2010, https://doi.org/10.3390/nu12020336
  15. Comparative Study of the Effects of Light Controlled Germination Conditions on Saponarin Content in Barley Sprouts and Lipid Accumulation Suppression in HepG2 Hepatocyte and 3T3-L1 Adipocyte Cells Usi vol.25, pp.22, 2020, https://doi.org/10.3390/molecules25225349