DOI QR코드

DOI QR Code

Shear Strength Model for Interior Flat Plate-Column Connections

무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델

  • Received : 2009.11.18
  • Accepted : 2010.01.25
  • Published : 2010.06.30

Abstract

An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

직접전단과 불균형모멘트를 재하받는 슬래브-기둥 내부 접합부에 대한 대체설계방법이 개발되었다. 슬래브-기둥 접합부는 뚫림전단파괴에 앞서서 휨균열에 의해서 손상을 받으므로, 이 연구에서는 위험단면의 압축대에서 대부분의 전단저항이 발휘된다고 가정하였다. 뚫림전단강도의 산정을 위하여, 슬래브 휨모멘트와 불균형모멘트에 의해서 유발되는 압축수직응력의 영향을 고려하였다. 압축수직응력과 전단응력 사이의 상관관계를 고려하기 위하여, Rankine의 콘크리트 재료파괴기준을 사용하였다. 제안된 강도모델은 실험 결과와의 비교를 통하여 검증하였다. 검증 결과, 제안된 설계방법은 ACI 318과 Eurocode 2 보다 우수한 강도추정능력을 가지고 있으며 직접전단 또는 직접전단-불균형모멘트 복합하중을 재하받는 슬래브-기둥 접합부의 설계에 사용될 수 있다는 점이 밝혀졌다.

Keywords

References

  1. MacGregor, J. G. and Wight, J. K., Reinforced Concrete: Mechanics and Design, Prentice Hall, NJ, 2005, 1132 pp.
  2. Yitzhaki, D., “Punching Strength of Reinforced Concrete Slabs,” ACI J., 1966, Vol. 63, No. 5, pp. 527-542.
  3. Long, A. E. and Rankin, G. I. B., “Prediction of the Punching Strength of Conventional Slab-column Specimens,” Proc. Institution Civ. Engrs., Vol. 82, 1987, pp. 327-345. https://doi.org/10.1680/iicep.1987.382
  4. Pralong, J., Poinconnement Symetrique Des Plachersdalles, IBK-Bericht Nr., 131, Insitut fur Baustatik und Konstruktion ETH Zurish, 1982.
  5. Kinnunen, S. and Nylander, H., “Punching of Concrete Slabs without Shear Reinforcement,” Transactions, No. 158, Royal Institute of Technology, Stockholm, 1960, 112 pp.
  6. Alexander, S. D. B. and Simmonds, S. H., “Ultimate Strength of Slab-Column Connections,” ACI Struct. J., Vol. 84, No. 3, 1987, pp. 255-261.
  7. Bazant, Z. P. and Cao, Z., “Size Effect in Punching Shear Failure of Slabs,” ACI Struct. J., Vol. 84, No. 1, 1987, pp. 44-53.
  8. Pan, A. and Moehle, J. P., “Later Displacement Ductility of Reinforced Concrete Flat Plates,” ACI Struct. J., Vol. 86, No. 3, 1989, pp. 250-258.
  9. Luo, Y. H. and Durrani, A. J., “Equivalent Beam Model for Flat-slab Buildings-Part I: Interior Connections,” ACI Struct. J., Vol. 92, No. 1, 1995, pp. 115-124.
  10. 최경규, 박홍근, “플랫플레이트-기둥 접합부의 뚫림전단 강도,” 콘크리트학회지, 16권, 2호, 2004, pp. 163-174. https://doi.org/10.4334/JKCI.2004.16.2.163
  11. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), Amerian Concrete Institute, USA, 2008, 473 pp.
  12. CEB-FIP MC 90, Design of Concrete Structures, CEB-FIPModel-Code 1990, Thomas Telford, 1993, 437 pp.
  13. BS 8110, Structural Use of Concrete, Part 1, Code of Practice for Design and Construction, British Standards Institution, London, 1997, 172 pp.
  14. EC 2, Design of Concrete Structures Part I: General Rules and Rules for Buildings, European Committee for Standardization Brussels, 2002, 225 pp.
  15. FIP 12, Punching of Structural Concrete Slabs, CEB-FIP Task Group, Lausanne, Switzerland; 2001, 314 pp.
  16. 최경규, 박홍근, “플랫플레이트-기둥 접합부의 뚫림전단 강도,” 콘크리트학회지, 14권, 6호, 2002, pp. 961-972.
  17. Park, H. and Choi, K., “Improved Strength Model for Interior Flat Plate-column Connections Subject to Unbalanced Moment,” ASCE J. Structural Engrg., Vol. 132, No. 5, 2006, pp. 694-704. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(694)
  18. Tian, Y., Jirsa, J. O., and Bayrak, O., “Nonlinear Modeling of Slab-column Connections under Cyclic Loading,” ACI Struct. J., Vol. 106, No. 1, 2009, pp. 30-38.
  19. Park, H., Choi, K., and Wight, J. K., “Strain-based Shear Strength Model for Slender Beams without Web Reinforcement,” ACI Struct. J., Vol. 103, No. 6, 2006, pp. 783-793.
  20. Choi, K., Park, H., and Wight, J. K., “Unified Shear Strength Model for Reinforced Concrete Beams- Part I: Development,” ACI Struct. J., Vol. 104, No. 2, 2007, pp. 142-152.
  21. Kotsovos, M. D. and Pavlovic, M. N., Ultimate Limit-state Design of Concrete Structures: a New Approach, Thomas Telford, London, 1998. 208 pp.
  22. Zararis, P. D. and Papadakis, G. C., “Diagonal Shear Failure and Size Effect in RC Beams without Web Reinforcement,” J. Struct. Engrg., ASCE, Vol. 127, No. 7, 2001, pp. 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
  23. Jelic, I., Pavlovic, M. N., and Kotsovos, M. D., “A Study of Dowel Action in Reinforced Concrete Beams,” Magazine of Concrete Research, Vol. 51, No. 2, 1999, pp. 131-141. https://doi.org/10.1680/macr.1999.51.2.131
  24. Tureyen, A. K. and Frosch, R. J., “Concrete Shear Strength: Another Perspective,” ACI Struct. J., Vol. 100, No. 5, 2003, pp. 609-615.
  25. Choi, K., Reda Taha, M. M., Park, H., and Maji, A. K., “Punching Shear Strength of Interior Concrete Slab-column Connections Reinforced with Steel Fibers,” Cement and Concrete Composites, Vol. 29, No. 5, 2007, pp. 409-420. https://doi.org/10.1016/j.cemconcomp.2006.12.003
  26. Chen W. F., Plasticity in Reinforced Concrete, New York, McGraw-Hill, 1982, pp. 204-205.
  27. Kupfer, H. B., Hildorf, H. K., and Rusch, H., “Behavior of Concrete under Biaxial Stresses,” ACI J., Vol. 66, No. 8, 1969, pp. 656-666.
  28. CSA A23.3-M04 Technical Ccommittee, Design of Concrete Structures, Canadian Standards Associations, Toronto, Ontario, 2004.
  29. Manterola, M., “Poinconnement de Ddalles Ssans Aarmature d’effort Ttrenchant,” ComiteEuropeen du Beton (Hrsg.), Dalles, Structures Pplanes, CEB-Bull, Paris, d’Information 1966, 58 pp.
  30. Farhey, D. N., Adin, M. A., and Yankelevsky, D. Z., “Flat Slab-Column Subassemblages under Lateral Loading,” J. Struct. Engrg., ASCE, Vol. 119, No. 6, 1993, pp. 1903-1916. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1903)
  31. Ramdane, K. E., “Punching Shear of High Performance Concrete Slabs,” Utilization of High Strength/high Performance Concrete, Laboratoire Central des Ponts et Chausees, Paris, Vol. 3, 1996, pp. 1015-1026.
  32. Marzouk, H. and Hussein, A., “Experimental Investigation on the Behavior of High-strength Concrete Slabs,” ACI Struct. J., Vol. 88, No. 6, 1991, pp. 701-713.
  33. Regan, P., “Symmetric Punching of Reinforced Concrete Slabs,” Magazine of concrete research, Vol. 38S, 1986, pp. 115-128.
  34. Morrison, D. G. and Sozen, M. A., “Response of Reinforced Concrete Plate-Column Connections to Dynamic and Static Horizontal Loads,” Civil Engineering Studies, Structural Research Series, No. 490, University of Illinois, Urbana, Apr. 1981.

Cited by

  1. Modification of the ACI 318 Design Method for Slab-Column Connections Subjected to Unbalanced Moment vol.17, pp.10, 2014, https://doi.org/10.1260/1369-4332.17.10.1469
  2. Shear Strength Model for Slab-Column Connections vol.22, pp.4, 2010, https://doi.org/10.4334/JKCI.2010.22.4.585
  3. Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement vol.23, pp.2, 2011, https://doi.org/10.4334/JKCI.2011.23.2.159