DOI QR코드

DOI QR Code

Air Pumps for Polymer Electrolyte Membrane Fuel Cells

휴대용 고분자전해질막 연료전지의 산화제 공급을 위한 전기침투 현상 기반의 공기펌프의 개발

  • Received : 2010.01.07
  • Accepted : 2010.06.04
  • Published : 2010.07.01

Abstract

We propose an electroosmosis-based air delivery scheme for polymer electrolyte fuel cells and experimentally investigate its feasibility. An electroosmotic pump under a low-frequency AC electric field is used to displace initially a volume of pump working liquids. This working liquid is then pumped into a space enclosed by a flexible membrane and the movement of the membrane delivers air to a fuel cell. We successfully demonstrated the operation of a forced-convection fuel cell using this technique. In this preliminary study, however, the power consumption of the pump exceeds the power generated by the fuel cell. We conclude this paper with a discussion of several ways to reduce the pump-to-fuel cell power ratio.

본 논문은 고분자전해질막 연료전지의 공기 공급을 위해 전기침투현상에 기반을 둔 공기 공급 방법을 제안하고 이를 실험적으로 평가하였다. 작동 유체의 구동을 위해서 전기침투펌프를 낮은 주파수의 교류 전기장에서 사용하였다. 작동 유체는 유연한 막에 의해 막 밀봉하였고, 막의 움직임에 의해 연료전지 내로 공기를 공급하였다. 본 연구에서는 전기침투현상 기반 공기펌프를 사용하여 연료전지의 공기 공급을 성공적으로 설명하였다. 펌프의 출력은 연료전지에서 생성되는 출력을 초과하였지만, 본 논문에서는 펌프의 출력 당 연료전지의 출력비를 줄이기 위한 몇 가지 방법들에 대해 설명하였다.

Acknowledgement

Supported by : 국방과학연구소

References

  1. Lu, G. Q., Wang, C. Y., Yen, T. J. and Zhang, X., 2004"Development and Characterization of a Silicon-BasedMicro Direct Methanol Fuel Cell," ElectrochimicaActa, Vol. 49, No. 5, pp. 821-828 https://doi.org/10.1016/j.electacta.2003.09.036
  2. Lu, G. Q. and Wang, C. Y., 2005 "Development ofMicro Direct Methanol Fuel Cells for High PowerApplications," Journal of Power Sources, Vol. 144, No.1, pp. 141-145 https://doi.org/10.1016/j.jpowsour.2004.12.023
  3. Choi, J. and Son, G., 2008, “Numerical Study ofDroplet Motion in a Microchannel with DifferentContact Angles,” Journal of Mechanical Science andTechnology Vol. 22, pp. 2590-2599 https://doi.org/10.1007/s12206-008-0905-8
  4. Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H. andWilkinson, D. P., 2006 "A Review of Anode Catalysisin the Direct Methanol Fuel Cell,” Journal of PowerSources, Vol. 155, No. 2, pp. 95-110 https://doi.org/10.1016/j.jpowsour.2006.01.030
  5. Dyer, C. K., 2002, “Fuel Cells for PortableApplications,” Fuel Cells Bulletin, Vol. 2002, No. 3,pp. 8-9 https://doi.org/10.1016/S1464-2859(02)80334-0
  6. Li, P. –W., Zhang, T., Wang, Q. –M., Schaefer, L. andChyu, M. K., 2003, “The Performance of PEM FuelCells Fed with Oxygen Through the Free-ConvectionMode,” Journal of Power Sources, Vol. 114, No. 1, pp.63-69 https://doi.org/10.1016/S0378-7753(02)00535-9
  7. Morner, S. O. and Klein, S. A., 2001, “ExperimentalEvaluation of the Dynamic Behavior of an Air-Breathing Feul Cell Stack,” Journal of Solar EnergyEngineering, Vol. 123, No. 3, pp. 225-231 https://doi.org/10.1115/1.1385202
  8. Hottinen, T., Mikkola, M. and Lund, P., 2004,“Evaluation of Planar Free-Breathing PolymerElectrolyte Membrane Fuel Cell Design,” Journal ofPower Sources, Vol.129, No. 1, pp. 68-72 https://doi.org/10.1016/j.jpowsour.2003.11.012
  9. Bernardi, D. M. and Verbrugge, M. W., 1992,“Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” Journal of ElectrochemicalSociety, Vol. 139, No. 9, pp. 2477-2491 https://doi.org/10.1149/1.2221251
  10. Yao, S., Santiago, J. G., 2003, "Porous GlassElectroosmotic Pumps: Theory," Journal of Colloidand Interface Science, Vol. 268, No.1, pp. 133-142 https://doi.org/10.1016/S0021-9797(03)00731-8
  11. Laser, D. J., Yao, S., Chen C. H., Mikkelsen, J. .,Goodsen, K.. E., Santiago J. G., and Kenny, T. W.,2001, “A Low Voltage Silicon MicromachinedParallel-Plate Electrokinetic Pump,” in Proc. 11th Int.Conference. Solid-State Sensors and Actuators(Transducers’01), Munich,Germany
  12. Yao, S., Hertzog D. E., Zeng, S., Mikkelsen J. C.,and Santiago J. G., 2003, “Porous GlassElectroosmotic Pump: Design and Experiments,”Journal of Colloid Interface Science, Vol. 268, No. 1,pp. 143-153 https://doi.org/10.1016/S0021-9797(03)00730-6
  13. Prakash, P., Grissom, M. D. and Zydney, A. L., 2006,“Development of an Electroosmotic Pump for HighPerformance Actuation,” Journal of MembraneScience, Vol. 286, No. 1-2, pp. 153-160 https://doi.org/10.1016/j.memsci.2006.09.029
  14. Yao, S., Myers, A. M., Posner, J. D., Rose, K. A. andSantiago, J. G.., 2006, “Electroosmotic PumpsFabricated from Porous Silicon Membranes,” Journalof Microelectromechanical Systems, Vol. 15, No. 3, pp.717-728 https://doi.org/10.1109/JMEMS.2006.876796
  15. Chen, Y. F., Li, M. C., Hu, Y. H., Chang, W-J. andWang, C. C-., 2008, “Low-Voltage ElectroosmoticPumping Using Porous Anodic Alumina Membranes,”Microfluidic Nanofluid, Vol. 5, No.2, pp. 234-244
  16. Brask, A., Kutter, J. P. and Bruus, H., 2005, “Long-termStable Electroosmotic Pump with Ion ExchangeMembrane,” Lab on a Chip, 5, pp. 730-738 https://doi.org/10.1039/b503626g
  17. Yang, B., Zhang, F., Liang, X., Dasgupta, P. K. andLiu, S., 2009, "Ion Exchange Resin Bead DecoupledHigh-Pressure Electroosmotic Pump," AnalyticalChemistry, Vol. 81, No. 12, pp. 5102-5106 https://doi.org/10.1021/ac900570s
  18. Wang, X., Wang, S., Gendhar, B., Chang, C., Chang,B. K., Li, G. and Zhao, M., 2009 "ElectroosmoticPumps for Microflow Analysis," TrAC Trends inAnalytical Chemistry, Vol. 28, No. 1, pp. 64-74 https://doi.org/10.1016/j.trac.2008.09.014
  19. Buie, C. R., Kim D., Litster, S. and Santiago, J. G.,2007, "An Electro-osmotic Fuel Pump for DirectMethanol Fuel Cells," Electrochemical and Solid-stateLetters, Vol. 11, No.11, pp. B196-B200
  20. Buie, C. R., Posner, J. D., Fabian, T., Cha, T. W.,Kim, D., Prinz, F. B., Eaton, J. K. and Santiago, J. G.,2006, "Water Management in Proton ExchangeMembrane Fuel Cells Using Integrated ElectroosmoticPumping," Journal of Power Sources, Vol. 161, No. 1,pp. 191-202 https://doi.org/10.1016/j.jpowsour.2006.03.021
  21. Chen C. and Santiago, J. G., 2002, “A PlanarElectroosmotic Micropump,” Journal of MicroelectromechanicSystems, Vol. 11, No. 6, pp. 672-683. https://doi.org/10.1109/JMEMS.2002.805055

Cited by

  1. Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits vol.36, pp.6, 2012, https://doi.org/10.3795/KSME-B.2012.36.6.619
  2. Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources vol.39, pp.6, 2015, https://doi.org/10.3795/KSME-B.2015.39.6.513
  3. Comparison of Electro-Osmotic Pumps with Two Different Types of Porous Glass Frits vol.35, pp.4, 2011, https://doi.org/10.3795/KSME-B.2011.35.4.379