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Abstract

Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model.
Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function
estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and
nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-
SVM.LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression
function in a high dimensional feature space. The proposed method is not computationally expensive since
its solution is obtained from a simple linear equation system. In particular, this method is a very attractive
approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the
underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental
results are then presented which indicate the performance of this method.

Keywords: Fuzzy regression, hybrid regression, least squares support vector machine, nonlinear,
weighted fuzzy arithmetic.

1. Introduction

Uncertainties pervade the analysis and modeling of data. There are usually two types of uncertainty.
The first is randomness and the second is fuzziness. The theories of probability and statistics are
used in dealing with randomness, whereas the theory of fuzzy sets are used in dealing with fuzziness.
In many real applications, both randomness and fuzziness appear simultaneously in a system, and
need to be considered in regression analysis. Fuzzy regression analysis handles fuzzy data which
represents fuzziness. Hybrid regression analysis integrates both randomness and fuzziness into a
regression model. This hybrid concept is discussed in this paper. The methods of fuzzy regression
and hybrid regression analysis are used to develop prediction models based on fuzzy data. A detailed
discussion of fuzzy regression is provided in Tanaka (1987), Tanaka et al. (1982) and Tanaka and
Watada (1988). A major difference between fuzzy regression and statistical regression is in dealing
with errors. Fuzzy regression deals with errors as fuzzy variables, whereas statistical regression deals
with errors as random residuals. It has been noted that fuzzy regression could be more effective
than statistical regression when the degree of fuzziness of systems is high. Chang (2001) proposed a
hybrid fuzzy least squares regression approach. The method uses a new definition of weighted fuzzy
arithmetic(WFA) and the well-known least squares criterion.
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Support vector machine(SVM) has been very successful in pattern recognition and function es-
timation problems for crisp data. See for details Gunn (1998), Smola and Schoelkopf (1998) and
Vapnik (1998). This paper focuses on a least squares support vector machine(LS-SVM) proposed by
Suykens (2001), which is a reformulation to standard SVM. In this paper we propose a new method
to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output
using the definition of WFA and the principle of LS-SVM. The proposed method is computationally
cheap since its solution is obtained by solving a simple linear equation system. LS-SVM allows us
to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a
high dimensional feature space. The proposed method here is a very attractive approach to evaluating
hybrid fuzzy nonlinear regression model with crisp inputs and fuzzy output, and is model-free method
in the sense that we do not have to assume the underlying model function for hybrid fuzzy nonlinear
regression. This model-free method turns out to be a promising method which has been attempted to
treat hybrid fuzzy nonlinear regression model.

The rest of this paper is organized as follows. In Section 2, we review some notions and defini-
tions of WFA. In Section 3, we propose hybrid fuzzy LS-SVM regression method based on hybrid
fuzzy least squares regression approach of Chang (2001). In Section 4, we describe some parameter
selection methods. In Section 5, we illustrate our approach through examples. Finally, we conclude
in Section 6.

2. Weighted Fuzzy Arithmetic

When conventional fuzzy arithmetic is used to deal with the regression problems, a large number
of arithmetic operations needs to be involved and the fuzzy widths could add up to an unrealistic
large number. Other problems with conventional fuzzy subtraction and conventional fuzzy division
have been identified by Chao and Ayyub (1996). To make up these drawbacks of the conventional
fuzzy arithmetic, Chang (2001) proposed a new definition of WFA. This WFA defines the arithmetic
operations between two fuzzy numbers as operating two corresponding values in each fuzzy set at
the same membership level, integrating each level operation weighted by the membership level for
the entire fuzzy sets, and dividing the weighted integration by the total integral of the membership
function. It has been noted that the WFA uses the concept of defuzzification to convert the operation
of fuzzy sets into a crisp real number. ‘

In this section we review well-known notions and definitions of WFA. Let A and B be triangular
fuzzy numbers that can be expressed as (a, l,, r,) and (b, Iy, rp), respectively. At u membership level,
the intervals of A and B can be expressed as

& = [ALAR] = la= (U~ lma+ (1~ pyra] @
B = [BL. By =[b~ (1= b+ (1~ ] 22)
According to the definition of WFA, the weighted fuzzy addition of A and B is then defined by

A+§=[I(A‘Z+B’z)ydy] +[f(Al1‘e+ B,;e)ﬂdﬂ] . (2.3)
u L u R

Substituting the formulas for A}, A%, B} and By, into the weighted integrations in the Equation (2.3)
yields the following integraions:

1 1 .
[ f (a7 + B'z)udu] = fo {fa - (=@l + b~ (1 - Wl pdp = %(a +h) - 2latl) (24)
H L )
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and

{ fy (a5 + B“;)uduL = fo 1 {la+ (1= mwra) + b+ (1= pry)} pdp = %w b) + é(ra +1). (2.5)
Thus, the sum of Equations (2.4) and (2.5) yields |
A+B=(a+b)+ é[(ra +1p) = (I, + )], ‘ 2.6)
When both A and B are symmetric fuzzy numbers, i.e., r, = I, and r, = l,, a special case of the
Equation (2.6) can be obtained as ‘
A+B=a+b. 2.7

However, A + B = A + C does not imply that B = C. Similarly, weighted fuzzy subtraction, weighted
fuzzy multiplication and weighted fuzzy division can be derived as follows:

A-B =@+ Llrg-m) =l 1p)] 2.38)
AB = {ab) + é[(bra +ary) — (bl + alp)] + %(falb + 1atp) 2.9

1 1
[a - (1 -wi] la+ (1 -wr.l
—udu + ————udp.
o - - o r =)
We notice that when arithmetic operations involve a fuzzy number and a crisp number, weighted

fuzzy arithmetic becomes ordinary arithmetic between the fuzzy center value of the fuzzy number and
“the crisp number.

A/B = (2.10)

3. Hybrid Fuzzy LS-SVM Regression

Chang (2001) proposed a hybrid fuzzy least squares regression approach using the definition of WFA
in order to integrate both randomness and fuzziness into a regression model. In this section, we
propose hybrid fuzzy LS-SVM regression to evaluate fuzzy linear and nonlinear regression models

with crisp inputs and fuzzy output data using the above definition of WFA and the principle of LS-
SVM.

3.1. Fuzzy least squares criterion

In this subsection, we briefly describe the fuzzy least squares criterion of Chang (2001) and then
reexpress it for our purpose. The definition of WFA is used to formulate the summation of the squares
of errors between the predicted and observed values.

Suppose that we are given training data {(x;, ¥1), ..., (xn, ¥,)} € R X T(R). Here, T(R) represents
the space of all triangular fuzzy numbers. Each observed value ¥; is expressed as ¥ = (i, e, €ir)-
Let x;; be element of x;. Then, we assume x;; > 0 by simple translation of all vectors. From now
on we use input vector x = (1, x;,...,xy) instead of x = (xy,...,xy)" for our purpose. Here, the
superscript ¢ denotes the transpose of matrix. For pedagogical reasons, we begin by describing the
case of fuzzy linear regression function ¥, taking the form

?i = A~(} +/§1X1,' L R +A~dXd,'
= (@0, lyg. Tay) + (@i, oy o) X0 + - + (Qas by Tay) Xai 3.1
= (atxi’ Ix;, "in),
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where a = (ag, ai,...,82) lo = Uagolays - - lay Y s Fa = (Pags Pays - - 1 7ay)

The principle of the least squares technique is to minimize the sum of the squares of residual
errors. Using the definition of WFA, we formulate the sum of the squares of residual errors between
the predicted values ¥; and the observed values ¥; as follows:

B 3 (k-7)

) ;U (7 - 7 "d"] U - 7%) uduL

= Zl fo [(a'x: - ) = (0 = ) (i - €]
. Zl I [(@x1-5) - 1 -0 (e - s

- 3 [3em-2) - ) s -e) -]
+Z[ a'x; - y’ ;(“txi_?’i)('fzxi—e;ﬂ)J“%(’in—éi,R)z]

n

(a’x,- - yi) [(l:;xi - ei,R) - (lﬁzxi - el.',R)] 3.2)

Lr)l»—-i

= (@ -y) +
i=1 =1
+ 1—12- [(lf,x,- — e,-,R)Z + (lf,x,- - ei,L)z] .

i=1

With a view to derive hybrid fuzzy LS-SVM we rewrite E as follows:

1, ¥V 1< 1 1, V¥
32 ax, 32(, N A axi+§lf,xi) +§i=zl(y,-+§em_atx,-—§rf,xi) .

We notice that the rewritten E is partitioned into three equally weighted sums of the squares of errors
so that LS-SVM can be appropriately applied.

3.2. Hybrid fuzzy LS-SVM regression

We now propose hybrid fuzzy LS-SVM to evaluate fuzzy linear and nonlinear regression models with
crisp input and fuzzy output by applying LS-SVM to the preceding fuzzy least squares.criterion. In
the case of noisy learning data, the use of traditional neural network, often leads to poor generalization
and overfitting. The SVM, whose foundations have been established by Vapnik, has been designed to
overcome these problems. Hong and Hwang (2003, 2005), Hwang et al. (2005, 2006) and Shim et al.
(2009) proposed the use of SVM for fuzzy and interval regression analysis. The standard SVM uses
e-insensitive loss function for function estimation. In this paper, we consider LS-SVM which uses
quadratic loss function and is simpler and faster than the standard SVM.

Using the new sum of the squares of errors of the Equation (3.3) the objective function without
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penalty terms can be considered as follows:

n
minimize ) (e + €3, + €3) (33)
i=1
e =yi—ax;, i= 1,...,n,

1 ,
subject to { €2 = Yi = 2 —d'x; + lx,, i=1,...,n,
1 ,
3,=y,-+§e,-,R—axi—§rf,x,~, i=1,...,n

We add the penalty terms and penalty parameter y on the objective function above to construct hybrid
fuzzy LS-SVM formulation as follows:

1 n
minimize a a+ 2lf,l += r’ r,+ % Z (efi +e5+ egi) (€X))

e=yi—-ax;, i=1,...,n,

1 T
subjectto ezizyi~§ei,L—axi+§laxi, i=1,...,n,

1 1 ,
e =y + Eei,R —-a'x; - zrﬁ,xi, i=1...,n
Here, the penalty parameter 7y is a positive real constant and should be considered as a tuning param-
eter in the algorithm. This controls the smoothness and degree of fit. The cost function with squared

error and regularization corresponds to a form of ridge regression.
Introducing Lagrange multipliers ay;, ay; and a3;, we construct a Lagrange function as follows:

1 Y
L:Eaa+il’l+ ~rr, + Z +e2,+e3l

n
!
- Za’u(a X;t+ey ")’i)

i=1

1
—ZQZL(axt - "l aXitey—yit+ zetL)
i=1

1 1 ‘
- Z as3; (a’x,- + irﬁlx,- +e3 —yi— —2-e,~,R) . (35)
i=1

Then, the conditions for optimality are given by

oL -
%" 0> a= ;(au + ay; + @3)X;
oL 1 ¢

oL 1<
ar, =0-r,= Ezayxi
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:TI;.;O_’eki=)l,01i, k=123, i=1,...,n
%I;i=0“"yi=a'xi+eli, i=1,...,n
ooy euman e 1=
g‘%:O_)yi_l-%ei’R:atxi"'%rzxi"'esi; i=1,...,n

Deﬁning a = (akl, e ,ak,,)’,k = 1,2, 3, y= (yl, e ,y,,)’, er = (e”g, ey e,,Jq)’, e; = (eLL, cee ,e,,,L)’
and eliminating a, l;, 7., e, k = 1,2, 3, we obtain

Q4+ %I Q Q a; y
Q %ﬂ + %I Q ) ] =|y- %eL , (3.6)
- Q Q@ je+iI]les] |y+jer
where Q;; = xixj, i,j=1,...,n.
Hence, the prediction ¥ given by the LS-SVM procedure on the new unlabeled example x is

. n 1 n 1 n
Y, = [Z(a” + ay + ay)xix, -3 Z ayxix, 5 Zl agixﬁx] ; 3.7

i=1 i=1 i=

Next, we will study LS-SVM to be used in estimating hybrid fuzzy nonlinear regression model.
In contrast to hybrid fuzzy linear regression, there has been no article on hybrid fuzzy nonlinear
regression. In this paper we treat hybrid fuzzy nonlinear regression for data of the form with crisp
inputs and fuzzy output, without assuming the underlying model function. In the case where a linear
regression function is inappropriate LS-SVM makes algorithm nonlinear. How can the above methods
be generalized to the case where the regression function is not a linear function of the data? This could
be achieved by simply preprocessing input patterns x; by a map ® : R¥*! — ¥ into some feature space
¥ and then applying LS-SVM regression algorithm. This is an astonishingly straightforward way.

First notice that the only way in which the data appears in the training problem is in the form of
dot products xx;. The algorithm would only depend on the data through dot products in ¥, i.e. on
functions of the form ®(x;)'®(x ;). Hence it suffices to know and use K(x;, x;) = ®(x;)'®(x;) instead
of @ explicitly. The only difference between LS-SVMs for linear and nonlinear regression estimations
is the use of mapping function ®. The well used kernels for regression problem are given below. .

K(x,y) = (x'y + 1)’ : Polynomial kernel
|2
K(x,y) = e'uxﬂy"' : Gaussian kernel

Here, p and o are kernel parameters. The kernel approach is again employed to address the curse of
dimensionality. In final, the solution of the hybrid fuzzy nonlinear LS-SVM regression is given by

n n n

- 1 1

Y= [E (a1 + @y +a3i)K(xi,x),_§ E a2 K(x;, x), 3 E a3,-K(x,~,x)].
i1 P =1

Here, @y = (an, . .., @), k =1,2,3 can be obtained from the corresponding linear equation system
constructed by replacing Q;; = x{x; in the Equation (3.7) with Q;; = K(x;, x;).
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Table 1: Symmetric triangular fuzzy numbers

X Y;

2 (14, 1)
4 16, 1)
6 (14, 1)
8 (18, 1)
10 (18, 1)
12 22, 1)
14 (18, 1)
16 22,1

4. Model Selection Method

When we use the proposed LS-SVM approach for hybrid fuzzy linear model, we still have to deter-
mine an optimal choice of the penalty parameter y. In particular, when we use this algorithm for
hybrid fuzzy nonlinear model, we have to determine in addition kernel parameter, which is the poly-
nomial degree p for polynomial kernel and the kernel width o for Gaussian kernel. There could be
several parameter selection methods such as cross-validation methods, bootstrapping and Bayesian
learning methods. In this paper, we use cross-validation methods.

If data is not scarce, then the set of available input-output measurements can be divided into two
parts. One of them is used to train a model while the other, called the test set, is used for testing the
model. In this way several different models, all trained on the training set, can be compared on the test
set. According to their performance on the test set, we try to infer the proper values of parameters.
This is the basic form of cross-validation. A better method is to partition the original set in several
different ways and to compute an average performance over the different partitions.

An extreme variant of this is to split the n measurements into a training set of size n - 1 and a
test set of size 1 and average the squared error on the left-out measurements over the n possible ways
of obtaining such a partition. This is called leave-one-out(LOQ) or 1-fold cross-validation. LOO is
computationally more demanding. For large data sets we typically prefer ten-fold cross-validation.
The advantage of LOO is that all the data can be used for training - none has to be held back in a

separate test set. In this paper, we actually use LOO in order to select penalty and kernel parameters,
which is defined as follows:

LOO() = % Z (7 - £7Y, 4.1

i=1

where A is the set of parameters and f’f‘i) is the predicted value of ¥; obtained from the training data
with the ith-measurement (x;, ¥;) removed.

5. Numerical Experiments

In this section, we use the same two data sets as in Chang (2001) and two simulated data sets to verify
the effectiveness of hybrid fuzzy LS-SVM for crisp input and fuzzy output data. The experiments
were conducted in MATLAB environment. Here, the Gaussian kernel K(x, y) = "%/ js ysed
for the nonlinear model. The related parameters are determined by LOO method.

For the first example, a data set of symmetric triangular fuzzy numbers is given below.

The parameter y for hybrid fuzzy linear LS-SVM is chosen as 400. Figure 1 shows the data set
and hybrid fuzzy linear regression estimates by our proposed method and Chang (2001). In Figure
1, the solid and dotted lines illustrate the fuzzy linear regression estimates by our proposed method
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Figure 1: Hybrid fuzzy linear regression estimates for the first example

and Chang (2001) for 4 = 0.0, respectively. From Figure 1 we recognize that the estimates of both
methods overlap so that we can not distinguish between them, and thus our proposed method performs
quite well.

We now consider the hybrid standard error HS, to evaluate both our proposed method and the
method of Chang (2001). The HS, is used to measure the goodness of fit between the hybrid regression
model and the observed fuzzy data, which is given as follows:

1 U
HS, = | ——— > (- 2,
e \ln_p_lizl(Y D

where n — p — 1 is the degree of freedom. In this example, p equals 1. The smaller the HS, value, the
better goodness of fit and the better accuracy of predictions. The HS,’s of both the proposed method
and the method of Chang (2001) are calculated to be HS, = 1.7929 and HS, = 1.79, respectively.
Hence, from Figure 1 and HS, we recognize that both methods work similarly well for the linear case.

The parameter v for hybrid fuzzy linear LS-SVM is chosen as 200. Figure 2 shows the data set
and hybrid fuzzy linear regression estimates by our proposed method and Chang (2001). As in Figure
1, the solid and dotted lines illustrate the fuzzy linear regression estimates by our proposed method
and Chang (2001) for uz = 0.0, respectively. From Figure 2 we recognize that the estimates of both
methods almost overlap and thus our proposed method performs quite well. The HS,’s of both the
proposed method and the method of Chang (2001) are calculated to be HS, = 1.8519 and HS, = 1.85,
respectively. Hence, we recognize that both methods work similarly well for the linear case.

In contrast to hybrid fuzzy linear regression, there has been no article on hybrid fuzzy nonlinear
regression. We now treat hybrid fuzzy nonlinear regression for data of the form with crisp inputs and
fuzzy output, without assuming the underlying model function. For the second example, a data set of
asymmetric triangular fuzzy numbers is given below.

In order to illustrate the performance of the hybrid fuzzy nonlinear regression prediction for
crisp inputs and fuzzy outputs, two examples are considered. In both examples, the 25 centers of
x;’s are randomly generated in [0,0.25,...,10.0). The spreads of ¥;’s are randomly generated:in
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Figure 2: Hybrid fuzzy linear regression estimates for the second example

Table 2: Asymmetric triangular fuzzy numbers

Xi Yr

2 (14,1.2,1.6)
4 (16, 1.6, 1.9)
6 (14,14,1.7)
8 (18,1.2,1.8)
10 (18,2.3,1.9)
12 (22,15,1.7)
14 (18,2.7,1.8)
16 (22,1.1,1.9)

[0.3,04,...,1.0]. The centers of ¥;’s of the third and fourth examples are generated as follows:

Yi
Yi

1.1 +2.5log(1 +x;) + ¢
2.1 +exp(0.2x;) + €,

respectively, where €,i = 1,2, ...,25, is a random error from the normal distribution with mean 0 and
variance 0.01.

The parameters (y, 02) for the third and fourth examples are chosen as (1000, 20) and (1000, 100),
respectively. Figure 3 and 4 show the data set and hybrid fuzzy nonlinear regression estimates by our
proposed method for the third and fourth examples, respectively. In Figure 3 and 4, the dotted, solid
and dashed curves illustrate the true centers and the hybrid fuzzy nonlinear regression estimates for
# =0.0and u = 0.7, respectively. The HS,’s for both examples are calculated to be HS, = 0.1050
and HS, = 0.1186, respectively. These values are quite small. Hence, we recognize that our proposed
method achieves satisfying results for the nonlinear case, too.

6. Conclusions

Through numerical experiments, we realize that the proposed algorithm derive the satisfying solutions
and are the attractive approaches to modeling the data with crisp inputs and fuzzy output. In particular,
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Figure 3: Hybrid fuzzy nonlinear regression estimates for the third example
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Figure 4: Hybrid fuzzy nonlinear regression estimates for the fouﬁh example

we realize that we can use this algorithm successfully when a linear model is inappropriate. One of
advantages of this algorithm is that we do not need to assume the underlying structure for the fuzzy
nonlinear regression model used in this paper. This nonparametric method turns out to be a promising
method which has been attempted to treat hybrid fuzzy nonlinear regression model.

The algorithm combine generalization control with a technique to address the curse of dimension-
ality. The main formulation results in solving a simple linear equation system. Hence, this is not a
computationally expensive way.

In this paper, we focus on proposing a new method to evaluate hybrid fuzzy linear and nonlinear
regression models using WFA and LS-SVM. However, we can derive, in a straightforward manner,
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similar algorithms by using standard SVM which uses e-insensitive loss function. The penalty and
kernel parameters of the proposed algorithm have been tuned using L.OO cross-validation and a grid
search mechanism.
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