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Abstract
A class of threshold-asymmetric GRACH(TGARCH, hereafter) models has been useful for explaining asym-
metric volatilities in the field of financial time series. The cumulative impulse response function of a conditionally
heteroscedastic time series often measures a degree of unstability in volatilities. In this article, a general form of
the cumulative impulse response function of the TGARCH model is discussed. In particular, We present formula
in their closed forms for the first two lower order models, viz., TGARCH(1, 1) and TGARCH(2, 2).
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1. Introduction

The volatility (defined as a conditional variance) of financial time series data exhibits characteristics
such as volatility clustering, time varying, heavy-tailed distribution and leverage effect. In order to
accommodate these characteristics in time series modeling, autoregressive conditional heteroscedastic
(ARCH) model was introduced by Engle (1982) and Bollerslev (1986) extended the ARCH class by
introducing generalized-ARCH(GARCH). Both ARCH and GARCH have served as useful models
for analyzing symmetric models for which volatility is a linear function of the squared past values.
Since volatilities in GARCH do not discriminate whether the past values are positive or negative, as
long as they are of the same magnitude, the GARCH class fails to capture asymmetric volatilities.
Therefore, there has been growing interest in asymmetric GARCH modelling in a response to the
empirical evidences of asymmetric volatilities arising mainly from the financial time series. Refer to,
Li and Li (1996), Rabemananjara and Zakoian (1993), Hwang and Basawa (2004), Pan et al. (2008)
and Park et al. (2009) with references therein.
A general class of threshold GARCH(TGARCH) is formulated by

& = \/}Tt "€, (11)
q P
W= B =+ Y e (6507 + an (7.)%].
j=1 i=1

where 6 > 0 denotes a power transformation and the notation
&" =max(e,0) and £ =min(-¢,0)

will be used. Here the innovation {e,} stands for a sequence of iid random variables with mean zero and
variance unity. The time series {¢,} given by (1.1) is referred to as power-transformed TGARCH(p, q)
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model. Refer to Pan ef al. (2008). With the case of the first order model'with 6 = 1, TGARCH(1, 1) is
of the form .
= w+an (8:-_1) + Q12 (6‘,—_1) +ﬂlht—l- (1.2)

When the distribution of {e,} is symmetric, it is well known for (1.2) that {g,} is second order stationary
provided

¢ = '12“(011 +ap)+fi< L (1.3)

Refer to Hwang and Basawa (2004) and Liu (2006).

Most of the research on TGARCH models has been directed to second order stationary case where
I-step ahead volatility converges almost surely to a constant of the stationary moment E(k;) as the lead
time [ goes to infinity. As regards unstable cases, Park ef al. (2009) recently proposed a “integrated”
TGARCH process (I-TGARCH, for short) for which ¢; = 1. They showed that -TGARCH(1, 1)
exhibits “persistent” properties in the sense that the current volatility continues to remain in the future
volatilities for all-step ahead volatilities. In addition, see Hwang et al. (2010) for the explosive
case of ¢; > 1. In this article, we are concerned with the limiting cumulative impulse response
function for TGARCH(p, q) processes in order to measure long-run effect of current shocks to the
future volatilities. A general solution for the cumulative impulse response function is presented and
specific examples on TGARCH(1, 1) and TGARCH(2, 2) are discussed for illustration.

This article is organized as follows. Section 2 reviews the impulse response function often measur-
ing persistency in conditional variance. A general formula with specific examples of the cumulative
impulse response functions for a class of TGARCH(p, g) is presented in Section 3.

2. Impulse Response Function as a Measure of PerSistency in Volatility

The topic of long memory and persistence has recently attracted considerable attention in terms of the
second moment of a process. Many evidences of long memory processes have appeared in studies
of financial times series. Therefore, Baillie et al: (1996), in analogy with the fractionally difference
process for the level of a time series, introduced a class of FIGARCH(Fractionally Integrated Gener-
alized AutoRegressive Conditional Heteroscedasticity) models. This class provides a slow hyperbolic
rate of decay for lagged squared innovations instead of the usual exponential rates as for the standard
GARCH models. In order to measure the persistence of shocks to the conditional variance, Baillie et
al. (1996) investigated “impulse response function” for the optimal forecast of the future conditional
variance as a function of the current innovation and the cumulative impulse response weights. Baillie
et al. (1996) measure the persistent of shocks to the conditional variance using impulse response func-
tions for the first order FIGARCH. Also, Conrad and Karanasos (2006) extend the results in Baille et
al. (1996). Along with Baillie et al. (1996), we define the impulse response function and cumulative
impulse response function as follows.

Definition 1. The impulse response function vy, is defined by yo = 1 and

_ (k) Bk =1)

k>1, 2.1
on, on

Yk

where hi(l) is I-step ahead volatility and {n,} denotes innovation process for the squared process {8,2},
e,

m =& —E(e|Fi) = &7 — . 22)
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Note that {7,} forms a sequence of martingale differences.

Definition 2. The cumulative impulse response function is defined by

!
&=§:n. (2.3)
k=0

Note that the cumulative impulse response function 4, measures a certain contribution of innovation
7; (at time 7) to the [-step ahead volatility 4,(J). The long-run effect of current shocks to the future
volatilities can be assessed in terms of the limit of A4; as ] — o, i.e.,

Ao = lim 4. ‘ 2.4)

As noted by Baillie ef al. (1996), the cumulative impulse response function of standard second order
stationary GARCH(1, 1) is given by 4; = (¢; — ,Bl)¢’1‘1 for [ > 1 and hence, the effect of current shocks
to the future conditional variance decreases exponentially to zero. However, in the IGARCH(, 1)
model, 4; = (1-8;) for all lags ( > 1) which is obviously a nonzero constant, implying IGARCH(1, 1)
is a persistent process.

3. The Impulse Response Function of TGARCH(p,q) Model
Consider the time series {¢;} following TGARCH(p, ¢) model defined by

&= h e, (3.1
b q

h=w+ Z (aila:'_zi + (l’,'zst-_zi) + Zﬁjht_j,
i=1 j=1

where w > 0, @, an >0 =1,2,...,p), B, 20( = 1,...,9). Also {e} is iid with mean zero and
variance unit.
(C1) {e,} is symmetrically distributed with support (—oo, c0).

Define the process {¢:} given by

dp=ai,+Bi, (=12,...,p)

where @;; = @1 + (a2 — @i1)lj¢,<0) and I} stands for standard indicator function. It is immediate from
(C1) that

¢ = E(iy) = (E’%ﬁ’ﬁ) +8;, forallz. 3.2)
Definition 3. (I-TGARCH(p,q)) The TGARCH(p. q) defined in (3.1) is called -TGARCH(p, q) when
¢ = 1 for which ¢ = 3\, ¢:.
The squared process {€2} from TGARCH(p, g) can be expressed in terms of a ARMA representation
with random coefficients. See Park et al. (2009) for the TGARCH(1, 1) case.
Lemma 1. For (g} following TGARCH(p, q) with ¢ < 1 (¢ = X7, ¢ {2} can be represented as a
form of ARMA(max(p, q), q) with random coefficient {¢;,}. That is,

max(p,q)

q

2 2

& =wt Z Gig-i&r; T 11— Z:Bjnt—j-
=1 =1
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Proof: Replace k, by & — 7, in the Equation (3.1) and obtain
J4 q
-m=w + Z a,ls,_, + a',«zs,_,) + Z Bj (sf_ /'S ,)
i=1 Jj=1
concluding the proof. (i
Fix n and define /-step ahead volatility given by h,(l) = E(£,42), ! 2 1. Cumulative impulse

response of TGARCH(p, q) will be addressed in the following theorem. Assume that the data consist
of {&,, &n-1,..., &1} and let F, denote o--field generated by €,, &x-15. ..

Theorem t. Under (C1), fix the data size n and consider the random process {¢;,} with mean ¢; in
{3.2). For a general TGARCH(p,q) process, we identify the cumulative impulse response ; as

) max(p.q)
) =0+ Y. bl (33)
i=1
max(p.q)
) A= ) ¢idis G4

i=1

(iii) The general solution of linear difference Equation (3.4) is given by

where ®,(L) = 1 = 37 L' = [P0 - &L and &G = 1,2,...,m) are the (possibly complex)
roots of ®,(L) = 0 with multiplicity d;. Here L denotes the backward operator.

Proof: Without loss of generality, assume p > ¢. Note that (i) is verified by considering, for 1 > p,
ha(l) = E (&2, |F2)
p q
=Elw+ Z Binslmi€hpi + 1 = Zﬂj 7’7;]
i=1 =1
=w+ ¢lhn(z -+ + ¢phn(l - P)-

(ii) Following the line in Park et al. (2009) and Hwang ef al. (2010}, a combination of (2 1 and (2.3)
gives

oh.(D

e
'~ "an,

, forl>p.

Thus, (ii) can be easily obtained.

(iii) Equation (3.4) can be rewritten as ®,(L)4; = 0, with ®,(L) = 1 - ¢,Li in a form of linear
difference equation. A general solution of the linear difference equation <I> (L)/lg 0 can be obtained
as in (iii) via employing Theorem 3.6.2 and Corollary 3.6.2 in Brockwell and Davis (1991). O
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Figure 1: Estimated cumulative impulse response functions for KOSPI data

It is mentioned that the general solution (iii) in the theorem may not be easy to solve explicitly. To
illustrate how to obtain a closed solution of (iii), it may suffice only to consider the first two lower
order examples of TGARCH(1, 1) and TGARCH(Z, 2).

Ezample 1. TGARCH(, 1) process
Consider the following first order model specified by

h=w+ (a“s;'_zl + e )+ Bihu-.
We may readily conclude via Theorem 1 that
() TGARCH(1,1) with ¢ < 1; 4 = ¢, (¢, — B1), | 2 1 and thus A = 0.
(ii) - TGARCH(1, 1); Aeo = a11115,0) + @12]1s,<0) Which is random.

Proofs are omitted. We refer to Park ef al. (2009) for details.

The impulse response functions can be used to distinguish between TGARCH and I-TGARCH
specifications. Park et al. (2009) analyzed the conditional variance of the Korea stock prices in-
dex(KOSPI) returns for the period from Jan. 5, 2000 to Jun. 29, 2007 using both TGARCH(1, 1) and
I-TGARCH(1, 1). Figure 1 shows the estimated cumulative impulse response functions 4; both for
TGARHC(1, 1) and I-TGARCH processes. It is noted in Figure 1 that A; decreases 1o zero along with
lead time / for TGARCH(1, 1) model whereas J, is “persistent” for the case of -'TGARCH process.

Example 2. TGARCH(2, 2) process
The second order model TGARCH(Z, 2) is defined by

2 2
2 -2
h=w+ Z (G’né‘f_i + (I,’zsr__i) + Zﬁjh,_j.
j=1

i=1
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It will be shown that
(i) TGARCH(2,2) with ¢ < 1; A; = ¢141-1 + ¢24;-2, 1 > 3 and thus A, = 0.
(ii) -TGARCH(2,2); A; = A + (A3 — AD[{1 — (=¢2)""1}/(1 + ¢2)], I > 3 and therefore

_an + a2 + (@21 + @22)]5,<0)
1+¢

Ao

which is a non-zero random quantity.

To verify (i) and (ii), using Lemma 1, notice first that {¢?} can be represented as a form of
ARMA(2, 2) with random coeficients, viz.,

Eai) = W+ GLagl + Grn1En_y + M1 — BiTln — BoTln-15
where ¢y, = a11 + (@12 — @11)]jz,<0) + B1 and ¢, = @21 + (@22 = @21) ][, <0) + B2-

Taking expectation on both sides conditionally on ¥, we have

h,(1) = E(82n+1|ﬁ) 0w+ ¢1,n85 + ¢2,n-—18§_1 = Bi1in — B2Mn-1, (3.5)
which leads to via partial derivatives with respect to 1,
on,(1
Oy
For A, we have
ha(2) = E(2,,|F2) = @ + G11a(1) + $2.08% = B €h)
and it then follows from (3.7) that
oh,(2 ,
ho= T2 = ki + (2= ) 3.8
Due to Theorem 1, it can be shown that
h()=w+¢1h, (- 1)+ dh,(I-2), forl>3, (3.9)
and it then follows, for [ > 3
Ohy(l
A= 37]( ) =1 A1-1 + D2 A, (3.10)

(i) For ¢ = ¢, + ¢, < 1, it follows from (3.10) that A,, reduce to zero.
(ii) Note that for ¢; + ¢ = 1, 4; in (3.10) can be expressed as

A= Ay = (=62) (A1 — Ai-2)- (3.11)
From (3.11), we can easily obtain

1-(-¢2)"!

/11=/11+(/12—/11)( T+

), foralll >3,

which gives via (3.6) and (3.8)

i+l (b1n—B1)+ (d2n—B2)

Ao = =
1+¢ 1+¢

, concluding (ii).
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