Effect of Electrochemical Redox Reaction on Biochemical Ammonium Oxidation and Chemical Nitrite Oxidation

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Seo, Ha-Na (Department of Biological Engineering, Seokyeong University) ;
  • Kang, Seung-Won (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Received : 2009.05.22
  • Accepted : 2009.10.16
  • Published : 2010.03.31


A modified graphite felt electrode with neutral red (NR-electrode) was shown to catalyze the chemical oxidation of nitrite to nitrate under aerobic conditions. The electrochemically oxidized NR-electrode (EO-NR-electrode) and reduced NR-electrode (ER-NR-electrode) catalyzed the oxidation of $1,094{\pm}39$ mg/l and $382{\pm}45$ mg/l of nitrite, respectively, for 24 h. The electrically uncharged NR-electrode (EU-NR-electrode) catalyzed the oxidation of $345{\pm}47$ mg/l of nitrite for 24 h. The aerobic bacterial community immobilized in the EO-NR-electrode did not oxidize ammonium to nitrite; however, the aerobic bacterial community immobilized in the ER-NR-electrode bioelectrochemically oxidized $1,412{\pm}39$ mg/l of ammonium for 48 h. Meanwhile, the aerobic bacterial community immobilized on the EU-NR-electrode biochemically oxidized $449{\pm}22$ mg/l of ammonium for 48 h. In the continuous culture system, the aerobic bacterial community immobilized on the ER-NR-electrode bioelectrochemically oxidized a minimal $1,337{\pm}38$ mg/l to a maximal $1,480{\pm}38$ mg/l of ammonium to nitrate, and the community immobilized on the EU-NR-electrode biochemically oxidized a minimal $327{\pm}23$ mg/l to a maximal $412{\pm}26$ mg/l of ammonium to nitrate every two days. The bacterial communities cultivated in the ER-NR-electrode and EU-NR-electrode in the continuous culture system were analyzed by TGGE on the $20^{th}$ and $50^{th}$ days of incubation. Some ammonium-oxidizing bacteria were enriched on the ER-NR-electrode, but not on the EU-NR-electrode.


  1. Aleem, J. I. H. and H. Lee. 1963. Autotrophic enzyme systems. I. Electron transport system concerned with hydroxylamine oxidation in Nitrosomonas. Can J. Biochem. Physiol. 41: 763-774.
  2. Aleem, M. I. H., H. Lees, and D. J. D. Nicholas. 1963. Adenosine-triphosphate-dependent reduction of nicotinamideadenine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature (London) 200: 759-761.
  3. Aleem, M. I. H. and D. L. Sewell. 1981. Mechanism of nitrile oxidation and oxidoreductase systems in Nitrobacter agilis. Curr. Microbiol. 5: 267-272.
  4. Bhandari, B. and D. J. D. Nicholas. 1979. Ammonia and $O_{2}$ uptake in relation to proton translocation in cells of Nitrosomonas eutropaea. Arch. Microbiol. 122: 249-255.
  5. Bhandari, B. and D. J. D. Nicholas. 1979. Ammonia, $O_{2}$ uptake and proton extrusion by spheroplasts of Nitrosomonas eutropaea. FEMS Microbiol. Lett. 6: 297-300.
  6. Bollmann, A., M.-J. Bar-Gilissen, and H. J. Laanbroek. 2002. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68: 4751-4757.
  7. Caro, C. A., F. Bedioui, and J. H. Zagal. 2002. Electrocatalytic oxidation of nitrite to nitrate on a vitreous carbon electrode modified with cobalt phthalocyanine. Electrochim. Acta 47: 1489-1494.
  8. Droad, J. W. 1976. Energy coupling and respiration in Nitrosomonas europaea. Arch. Microbiol. 110: 257-262.
  9. Egli, K., C. Langer, H. R. Siegrist, A. J. B. Zehnder, M. Wagner, and J. R. van der Meer. 2003. Community analysis of ammonia and nitrite oxidizer during start-up of nitritation reactors. Appl. Environ. Microbiol. 69: 3213-3222.
  10. Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. Springer-Verlag, New York.
  11. Harold, F. M. 1977. Membrane and energy transduction in bacteria. Curr. Top. Bioenergy 6: 83-149.
  12. Greenber, A. E., L. S. Clessceri, A. D. Eaton, and M. A. H. Franson. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Ed., Section 4-87. American Public Health Association, NW, U.S.A.
  13. Hollocher, T. C., S. Kumar, and D. J. Nicholas. 1982. Respirationdependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidation. J. Bacteriol. 149: 1013-1020.
  14. Kaback, H. R. 1976. Molecular biology and energetics of membrane transport. J. Cell. Physiol. 89: 575-594.
  15. Kang, H. S., B. K. Na, and D. H. Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^{+}/NADH$. Biotech. Lett. 29: 1277-1280.
  16. Maloney, P. C., E. R. Kashket, and T. H. Wilson. 1974. A proton-motive force drives ATP synthesis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 71: 3896-3900.
  17. Moriarty, D. J. W. and R. T. Bell. 1993. Bacterial growth and starvation in aquatic environments, pp. 25-53. In S. Kjelleberg (ed.). Starvation in Bacteria. Plenum Press, New York, NY.
  18. Nomoto, T., Y. Fukumori, and T. Yamanaka. 1993. Membranebound cytochrome c is an alternative electron donor for cytochrome $aa_{3}$ in Nitrobacter winogradskyi. J. Bacteriol. 175: 4400-4404.
  19. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neural red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
  20. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85.
  21. Princic , A., I. Mahne, F. Megusar, A. Paul, and J. M. Tiedje. 1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590.
  22. Prosser, J. I. 1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181.
  23. Richardson, D. J., G. F. King, D. J. Kelly, A. G. McEwan, S. J. Ferguson, and J. B. Jackson. 1988. The role of auxiliary oxidants in maintaining the redox balance during phototrophic growth of Rhodobacter capsulatus on propionate of butyrate. Arch. Microbiol. 150: 131-137.
  24. Shively, J. M., G. van Keulen, and W. G. Meijer. 1998. Something from almost nothing: Carbon dioxide fixation in chemolithotrophs. Annu. Rev. Microbiol. 52: 191-230.
  25. Some, N., K. Yanagita, Y. Hon-Mami, Y. Fukumori, and T. Yamanaka. 1983. Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidases. FEBS Lett. 155: 150-154.
  26. Stead, D. E. 1992. Grouping of plant pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42: 281-295.
  27. Sun, C. C. and T. C. Chou. 1999. Kinetics of anodic oxidation of nitrite ion using in situ electrogenerated HClO in a NaCl aqueous solution. Ind. Eng. Chem. Res. 38: 4545-4551.
  28. Suwa, Y., Y, Imamura, T. Suzuki, T. Tashiro, and Y. Urushigawa. 1994. Ammonium-oxidizing bacteria with different sensitivities to $(NH_{4})SO_{4}$ in activated sludge. Water Res. 28: 1523-1532.
  29. Suzuki, I. 1974. Mechanism of inorganic oxidation and energy coupling. Annu. Rev. Microbiol. 28: 85-102.
  30. Tanaka, Y., Y. Fukumori, and T. Yamanaka. 1983. Purification of cytochrome $a_{1}c_{1}$ from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Arch. Microbiol. 135: 265-271.
  31. Tsai, Y. L., S. M. Schlasner, and O. Tuovinen. 1986. Inhibitor evaluation with immobilized Nitrobacter agilis. Appl. Environ. Microbiol. 52: 1231-1235.
  32. Udert, K. M., T. A. Larson, and W. Gujer. 2005. Chemical nitrite oxidation in acid solution as a consequence of microbial ammonium oxidation. Environ. Sci. Technol. 39: 4066-4075.
  33. Van Elsas, J. D. and L. S. van Overbeek. 1993. Bacterial responses to soil stimuli, pp. 55-79. In S. Kjelleberg (ed.). Starvation in Bacteria. Plenum Press, New York, NY.
  34. Van Ginkel, C. G., J. Tramper, K. C. A. M. Luyben, and A. Kalpwijk. 1983. Characterization of Nitrosomonas europaea immobilized in calcium alginate. Enzyme Microb. Technol. 5: 297-303.
  35. Van Keulen, G., L. Dijkhuizen, and W. G. Jeijer. 2000. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus. J. Bacteriol. 182: 4637-4639.
  36. Wang, X., D. L. Falcone, and F. R. Tabita. 1993. Reductive pentose phosphate-independent $CO_{2}$ fixation in Rhodobacter sphaeroides and evidence that ribulose biphosphate carboxylase activity serves to maintain the redox balance of the cell. J. Bacteriol. 175: 3372-3379.
  37. Wilson, D. M., J. F. Alderate, P. C. Maloney, and T. H. Wilson. 1976. Proton-motive force as the source of energy for adenosine 5'-phosphate synthesis in Escherichia coli. J. Bacteriol. 126: 327-337.
  38. Wood, P. M. 1986. Nitrification as a bacterial energy source, pp. 39-42. In J. L. Proser (ed.). Nitrification, Vol. 20. IRL Press. Oxford, England.
  39. Yamanaka, T., Y. Kamita, and Y. Fukumori. 1981. Molecular and enzymatic properties of 'cytochrome $aa_{3}$'-type terminal oxidase derived from Nitrobacter agilis. J. Biochem. 89: 265-272.
  40. Yamanaka, T., Y. Tanaka, and Y. Fukumori. 1982. Nitrobacter agilis cytochrome c-550: Isolation, physicochemical and enzymatic properties, and primary structure. Plant Cell Physiol. 23: 441-449.