동물병원성 뇌수막염 유발 곰팡이 Cryptococcus neoformans의 Pathogenomic Signaling Network 연구와 항곰팡이제 개발

Pathogenomic Signaling Networks and Antifungal Drug Development for Human Fungal Pathogen Cryptococcus neoformans

  • 고영준 (연세대학교 생명시스템대학 생명공학과, 곰팡이병원성연구센터) ;
  • 권유원 (연세대학교 생명시스템대학 생명공학과, 곰팡이병원성연구센터) ;
  • 나한나 (연세대학교 생명시스템대학 생명공학과, 곰팡이병원성연구센터) ;
  • 반용선 (연세대학교 생명시스템대학 생명공학과, 곰팡이병원성연구센터)
  • Ko, Young-Joon (Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University) ;
  • Kwon, Yoo-Won (Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University) ;
  • Na, Han-Na (Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University) ;
  • Bahn, Yong-Sun (Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University)
  • 투고 : 2010.02.28
  • 심사 : 2010.03.13
  • 발행 : 2010.03.28

초록

Past decade systemic mycoses caused by opportunistic human fungal pathogens, including Candida, Aspergillus, and Cryptococcus, have been a growing problem for both immunocompromised and immunocompetent individuals. Particularly, Cryptococcus neoformans has recently emerged as a major fungal pathogen, which can cause fungal pneumonia and meningitis that are lethal if not timely medicated. However, treatment for cryptococcosis has been difficult due to a lack of proper anti-cryptococcal drugs with fungicidal activity and less toxicity. In this review we introduced novel therapeutic methods for treating cryptococcosis by exploring pathogenomic signa1ing networks of C. neoformans with genome-wide transcriptome approaches as well as diverse molecular/genetic tools.

키워드

참고문헌

  1. Bahn, Y. S., G. M. Cox, J. R. Perfect, and J. Heitman, 2005. Carbonic anhydrase and $CO_2$ sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr. Biol. 15: 2013-2020. https://doi.org/10.1016/j.cub.2005.09.047
  2. Bahn, Y. S., J. K. Hicks, S. S. Giles, G. M. Cox, and J. Heitman, 2004. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell 3: 1476-1491.
  3. Bahn, Y. S., K. Kojima, G. M. Cox, and J. Heitman, 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell. 16: 2285-2300. https://doi.org/10.1091/mbc.E04-11-0987
  4. Chen, S., T. Sorrell, G. Nimmo, B. Speed, B. Currie, D. Ellis, D. Marriott, T. Pfeiffer, D. Parr, and K. Byth, 2000. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin. Infect. Dis. 31: 499-508. https://doi.org/10.1086/313992
  5. Henry, R. P., 1996. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu. Rev. Physiol. 58: 523-538. https://doi.org/10.1146/annurev.ph.58.030196.002515
  6. Hoang, L. M., J. A. Maguire, P. Doyle, M. Fyfe, and D. L. Roscoe, 2004. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53: 935-940. https://doi.org/10.1099/jmm.0.05427-0
  7. Idnurm, A., Y. S. Bahn, K. Nielsen, X. Lin, J. A. Fraser, and J. Heitman, 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3: 753-764. https://doi.org/10.1038/nrmicro1245
  8. Kim, M. S., S. Y. Kim, J. K. Yoon, Y. W. Lee, and Y. S. Bahn, 2009. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem. Biophys. Res. Commun. 390: 983-988. https://doi.org/10.1016/j.bbrc.2009.10.089
  9. Ko, Y. J., Y. M. Yu, G. B. Kim, G. W. Lee, P. J. Maeng, S. S. Kim, A. Floyd, J. Heitman, and Y. S. Bahn, 2009. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot. Cell 8: 1197-1217. https://doi.org/10.1128/EC.00120-09
  10. Kwon-Chung, K. J. and J. E. Bennett, 1984. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am. J. Epidemiol. 120: 123-130.
  11. Lewis, R. E., 2009. Overview of the changing epidemiology of candidemia. Curr. Med. Res. Opin. 25: 1732-1740.
  12. Liu, O. W., C. D. Chun, E. D. Chow, C. Chen, H. D. Madhani, and S. M. Noble, 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135: 174-188. https://doi.org/10.1016/j.cell.2008.07.046
  13. Maeng, S., Y. J. Ko, G. B. Kim, K. W. Jung, A. Floyd, J. Heitman, and Y. S. Bahn, 2010. Comparative transcriptome analysis reveals novel roles of the Ras- and cAMP-signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot. Cell 9: 360-378 https://doi.org/10.1128/EC.00309-09
  14. Nicol, A. M., C. Hurrell, W. McDowall, K. Bartlett, and N. Elmieh, 2008. Communicating the risks of a new, emerging pathogen: the case of Cryptococcus gattii. Risk Anal. 28: 373-386. https://doi.org/10.1111/j.1539-6924.2008.01024.x
  15. Park, B. J., K. A. Wannemuehler, B. J. Marston, N. Govender, P. G. Pappas, and T. M. Chiller, 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525-530. https://doi.org/10.1097/QAD.0b013e328322ffac
  16. Stephen, C., S. Lester, W. Black, M. Fyfe, and S. Raverty, 2002. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43: 792-794.
  17. Watson, P. H., S. K. Chia, C. C. Wykoff, C. Han, R.D. Leek, W. S. Sly, K. C. Gatter, P. Ratcliffe, and A. L. Harris, 2003. Carbonic anhydrase XII is a marker of good prognosis in invasive breast carcinoma. Br. J. Cancer 88: 1065-1070. https://doi.org/10.1038/sj.bjc.6600796
  18. Wilson, D., V. Charoensawan, S. K. Kummerfeld, and S. A. Teichmann, 2008. DBD-taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res. 36: D88-92. https://doi.org/10.1093/nar/gkn386