Defects Evaluation at Lap Joint Friction Stir Welding by Lock-in Ultrasound Infrared Thermography

위상잠금 초음파 적외선열화상에 의한 겹치기 마찰교반용접부의 결함 평가

  • Choi, Man-Yong (Safety Measurement Center, Korea Research Institute of Standards and Science) ;
  • Park, Hee-Sang (Safety Measurement Center, Korea Research Institute of Standards and Science) ;
  • Park, Jeong-Hak (Safety Measurement Center, Korea Research Institute of Standards and Science) ;
  • Kang, Ki-Soo
  • 최만용 (한국표준과학연구원 안전측정센터) ;
  • 박희상 (한국표준과학연구원 안전측정센터) ;
  • 박정학 (한국표준과학연구원 안전측정센터) ;
  • 강기수 (현대제철(주) 기술연구소)
  • Received : 2010.02.05
  • Accepted : 2010.04.16
  • Published : 2010.04.30

Abstract

Lap joint friction stir welding(LFSW) is an relatively new solid state joining process. A6061-T6 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio and good corrosion resistance. Test methods used in this paper, lock-in thermography, a phase difference between the defect area and the healthy area indicates the qualitative location and size of the defect. In this paper, the defects detected from the thermal image of mechanical properties for weld were evaluated and compared by the lock-in infrared thermography technique.

겹치기 마찰교반용접은 새로운 고상접합법이다. 알루미늄 합금 6061-T6는 좋은 내식성과 중량 대비 높은 기계적 강도로 인해 넓은 분야에서 경량부재로 사용되고 있다. 본 논문에서 사용한 검사 방법인 위상잠금 초음파 적외선열화상기법은 넓은 면적을 동시에 검사할 수 있으며, 결함부와 건전부 사이의 위상차로부터 결함의 유무를 판단할 수 있다. 본고의 연구로부터, 위상잠금 적외선열화상기술을 이용하여 용접부의 열영상을 검출하여 기계적 강도와 비교 평가하였다.

Keywords

References

  1. E. A. Starke, Jr. and J. T. Staley, "Application of modern aluminum alloys to aircraft," Progress in Aerospace Sciences, Vol. 32, Issues 2-3, pp. 131-172 (1996) https://doi.org/10.1016/0376-0421(95)00004-6
  2. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Smith-Temple, and C. J. Dawes. "Friction-stir butt welding," GB Patent No. 9125978.8, International Patent Application No. PCT/GB92/02203 (1991)
  3. R. John and K. V. Jata, Proceeding of the Friction Stir Welding and Processing, Eds. K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin and D. P. Field, TMS, p. 57 (2003)
  4. J. F. Hinrichs, C. B. Smith, B. F. Orsini, R. J. DeGerge, B. J. Smale and P. C. Ruehl "Friction stir welding for the 21st century automotive industry," Proceeding of the 5th International Symposium on Friction Stir Welding, Metz, France (2004)
  5. F. Riegart, Th. Zweschper and G. Busse, "Eddy-current lock-in thermography: Method and it'l potential," J. Phys. IV France, Vol. 125, pp. 587-591 (2005) https://doi.org/10.1051/jp4:2005125135
  6. V. P. Vavilov, "Infrared and thermal testing: Heat transfer," Nondestructive Testing Handbook Series III (3rd Ed.), X. P. V. Maldague, P.O. Moore Ed., pp. 54-86, ASNT, Columbus, USA (2001)
  7. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Rev. Gen. Therm., Vol. 37, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  8. G. Busse, "Infrared and thermal testing: technique of infrared thermography," Nondestructive Testing Handbook Series III (3rd Ed.), X. P. V. Maldague, P. O. Moore Ed., pp. 318-328, ASNT, Columbus, USA (2001)
  9. W. M. Thomas, K. L. Johnson and C. S. Wiesner, "Friction stir welding - Recent developments in tool and process technologies," Advanced Engineering Materials, Vol. 5, No. 7, pp. 485-490 (2003) https://doi.org/10.1002/adem.200300355
  10. M. Y. Choi, S. S. Lee, J. H. Park, W. T. Kim and K. S. Kang, "Analysis of heat generation mechanism in ultrasound infrared thermography," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 1, pp. 10-14 (2009)