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Abstract

Noninvasive detection of patients with probable Alzheimer’s disease (AD) is of great importance for assisting a medical doctor’s decision
for early treatment of AD patients. In the present study, we have extracted quantitative electroencephalogram (QEEG) variables, which can
be potentially used to diagnose AD, from resting eyes-closed continuous EEGs of 22 AD patients and 27 age-matched normal control (NC)
subjects. We have extracted qEEG variables from mean phase coherence (MPC) and EEG coherence, evaluated for all possible combinations
of electrode pairs. Preliminary trials to discriminate the two groups with the extracted qEEG variables demonstrated that the use of MPC as
a supplementary or alternative measure for the EEG coherence may enhance the accuracy of noninvasive diagnosis of AD.
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| . INTRODUCTION

uantitative electroencephalogram (qEEG) has been a

Q useful tool in clinical neuropsychiatry, which can be
potentially used to assess electrophysiological changes
associated with various psychiatric diseases such as dementia,
schizophrenia, depression, and so on [1-4]. Recently, among
various classical gEEG variables such as relative power at a
specific frequency band for an electrode, bipolar asymmetry at
central or anterior electrodes, and so on, EEG coherence
between two electrodes at a specific frequency band is
becoming of importance since it can efficiently quantify the
modifications in the cortico-cortical connections of a subject
[5].

Although considerable efforts have been made to build
standard databases of important gEEG variables including the
EEG coherence [1] and to characterize specific psychiatric
diseases [2-5], the general applicability of their databases has
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not been proven sufficiently because the gEEG variables may
be affected by various aspects such as sensitivity of the
recording system, experimental conditions, and so on. Therefore,
we tried to extract the qEEG variables from our own data sets.
In the present study, we have collected eyes-closed resting
EEG data sets from patients with Alzheimer’s disease (AD)
and age-matched normal control (NC) subjects, and tried to
extract important gEEG variables which can be potentially
used for the diagnosis of AD. We have calculated EEG
coherence values between all possible combinations of
electrode locations for 8 frequency bands and investigated
statistical difference between the two groups. We have
selected electrode pairs and frequency bands which showed
statistically meaningful differences (p < 0.01) between the two
groups. In addition, we also applied the same procedures to
another measure called mean phase coherence (MPC) [6,7],
which quantifies the synchronization of phase in a pair of time
series. To the best of our knowledge, the use of MPC for the
diagnosis of AD has not been reported. In the present paper,
we investigated if the MPC can be an alternative or
supplementary measure to diagnose AD.
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i, METHODS

A. EEG Recording

EEG was recorded for 22 AD patients (3 Males and 19
Females, Age 73.8y + 7.6y, Symptom duration 22.4 + 19
months) and 27 age-matched NC subjects (14 Males and 13
Females, Age 72.8y + 4.5y) in relaxed states with eyes closed
for 15 min each from 18 scalp electrode locations (Fpl, F3,
C3, P3, Fp2, F4, C4, P4, F7, T3, O1, F8, T4, T6, 02, T1, T2),
using the international 10 - 20 system with a ear reference. The
AD group fulfilled the DSM-IV criteria of dementia of
Alzheimer’s type. Patients with other medical conditions
known to cause dementia were excluded by means of neurolo-
gical, serological and imagery tests, including computed
tomographic imaging scan (CT-scan) and magnetic resonance
imaging (MRI). The symptom severity of AD was assessed by
mini mental status exam (MMSE). Their mean MMSE score
was 19.2 £ 3.6. The control group had no personal history of
psychiatric or neurological abnormalities. Their mean MMSE
score was 27.37 + 1.1, which was statistically different from
that of the AD group (p < 0.001).

The record was performed by a conventional 32-channel
EEG system (Nicolete Biomedical, Madison, WI, USA) in a
dimly lit, soundproof, electrically shielded room. The
horizontal eye movements were recorded across electrodes
lcm lateral to the outer canthus of each eye. The sensitivity
was set at 7 UV, bandpass filter at 1Hz to 70Hz, and a sampling
rate at 250Hz [8]. EEG segments with electrooculogram
(EOG) artifacts were excluded in a semi-automatic manner
and segments contaminated by the other artifacts were
excluded by visual inspections. Then, five sets of 5 sec signals
were randomly chosen from the processed EEG data and used
for the present analysis.

B. Calculation of Coherence

EEG coherence represents the covariance of the EEG
spectral activity at two electrode locations and can be considered
as a measure of temporal synchronization of the EEG signals
recorded at pairs of electrodes. Despite some known
limitations, the coherence analysis of EEG data has become a
basic tool available in practically all digital EEG machines
used for clinical applications. In the present paper, coherence
C was calculated by

C= o, I’/ Foafyy) M
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where f,, denotes the power spectral estimate of two EEG
signals  and y [9,10]. The numerator contains the cross
spectrum for z and y, while the denominator contains the
respective autospectra for z and y. This procedure returns a
real number between 0 (no coherence) and 1 (maximum
coherence).

C. Calculation of Mean Phase Coherence

Unlike the EEG coherence, MPC measures ‘phase’ synchr-
onization between the two EEG signals, excluding their
amplitude information [6,7]. Therefore, it is obvious that two
signals with a high EEG coherence value also have a high
phase coherence value, while high phase coherence does not
always mean that their coherence value is high. Conceptually,
MPC can be viewed as a similar measure with phase locking
value (PLV) [11].

The mean phase coherence R can be evaluated by

R= ({ Esm[%y(ﬂlﬂ]r

2\1/2 2
[N Ecos <,0z y(JAt)]l

where ¢, , represents phase difference between two EEG
signals  and y (Mormann et al 2000) and At represents the
interval of time samples. This procedure also returns a real
number between 0 (no phase coherence) and 1 (maximum
phase coherence). The phase angle ¢ (t) of a signal s(t) can
be evaluated by

P (¢)= arctan——

s(t)

3
s(t) )
where s (¢) is the Hilbert transform of s (¢).

lll. RESULTS

In the present study, we tried to extract meaningful qgEEG
variables which can be potentially used for the diagnosis of
AD. We first calculated EEG coherence between all possible
electrode pairs for each frequency band. Since the number of
electrodes used for the recording was 18, coherence was
evaluated for totally 18 x 17 / 2 = 153 electrode pairs. We
divided the frequency domain of interest into 8 sub-frequency
bands, which were delta(1-4 Hz), theta(4-8 Hz), alpha(8-12
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Fig. 1. Results of p-value evaluation. Coherence values that were evaluated for all possible combinations of electrode pairs at 8 different frequency bands were

stafistically compared between AD group and healthy control subject group. Bright colors represent small p-values. Channels in horizontal and vertical axes
were Fp1, F3, C3, P3, Fp2, F4, C4, P4, F7,T3, 01, F8, T4, 76, 02, T1, and T2.

Hz), low beta(12-15 Hz), beta(15-18 Hz), high beta(18-30
Hz), low gamma(30-40 Hz), and gamma(40-50 Hz) band
[12,13]. Therefore, the number of all candidates was 8 x 153 =
1224.

For each of the candidates, the difference between two
groups (AD patients and normal controls) was estimated using
a p-value obtained from paired r-tests. Fig. 1 shows the
distribution of the p-values, where horizontal and vertical axes
represent channels. Dark colors represent high p-value, which
means that two groups do not show statistically significant
difference, while bright colors represent small p-value, which
means that two groups may be statistically different. Please
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note that this process was required just to extract potentially
more meaningful gEEG parameters and we did not use the
p-value elsewhere.

We then picked up two qEEG variables which showed
smallest p-values among the candidate variables. The selected
gEEG variables were alpha coherence between P4 and T1
electrodes and high beta coherence between C4 and T1
electrodes. Fig. 2 shows the scatter distribution of coherence
values of every individual signal. It can be seen by the visual
inspection of the figure that two groups are roughly discriminable.
When a linear binary decision was applied to the two gEEG
variables, maximum diagnostic accuracy reached to 85.7%.
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Fig. 2, Scatier distribution of selected qEEG variables evaluated for every individual signal. The selected GEEG variables were alpha coherence between P4 and
T1 electrodes and high beta coherence between C4 and T1 electrodes.
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Table 1, The number of significant qEEG variables of which the p-values are less than 0.01.

frequency bands Coherenc—e—_ MPC*T

Delta 9 4
Theta 5 5
Aipha 7 2

Low beta 7 13
Beta 7 15

High beta 24 24
Low gamma 11 13
Gamma 7 3
Sum 77 79

*MPC represents mean phase coherence

We then evaluated MPC between all possible electrode
locations for the 8 frequency bands used for the EEG
coherence calculation and also estimated statistical difference
between the two groups using paired r-tests. To show the
difference in the numbers of potential QEEG variables, we
counted the numbers of qEEG variables, of which the p-values
are less than 0.01, from both coherence and MPC. Table 1
summarizes and compares the number of features extracted
from coherence and MPC. We can see from the table that more
potential features could be extracted from the coherence at
lower frequency bands, while slightly more features could be
extracted from MPC at higher frequency bands.

To demonstrate that the use of MPC along with the
coherence can be advantageous, we picked two EEG
variables: one from the coherence and the other from MPC.
The selected gEEG variables were high beta MPC between T1
and C4 electrodes and alpha coherence between P4 and T1
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electrodes. Fig. 3 shows the scatter distribution of the selected
qEEG variables evaluated for every individual signal. It can be
seen by the visual inspection of the figure that the border
between the two groups became much clearer than that shown
in Fig. 2. When a linear binary decision was applied to the two
qEEG variables, the diagnostic accuracy increased to be
91.8%.

We then applied multiple features (more than 2) extracted
from the coherence and MPC analyses to the diagnosis of
early dementia. For the classification, we used support vector
machine (SVM) algorithm [14] implemented in MATLAB
(Mathworks, Inc.) toolbox. Table 2 summarizes the test results
when 3 and 4 features were used for the classification. In the
table, ‘Coherence’ or ‘MPC’ represents the estimated classifi-
cation accuracy when 3 or 4 features with smallest p-values
were selected among either coherence values or MPC values.
In the ‘Coherence + MPC’ case, 3 features were composed of
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Fig. 3. Scatter distribution of selected qEEG variables evaluated for every individual signal. The selected qEEG variables were high beta mean phase coherence
between T1 and C4 electrodes and alpha coherence between P4 and T1 electrodes.
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Table 2, Classification results using multiple gEEG variables: The classification accuracy was evaluated by support vector machine (SVM).

# of felures 3 7
Coherence 91.6% 91.6%
MPC+ 91.6% 95.8%
Coherence + MPCx 95.8% 95.8%

*MPC represents mean phase coherence

2 coherence features and 1 MPC feature, and 4 features were
composed of 2 coherence and 2 MPC features. We also
evaluated the classification accuracy when 3 features were
composed of 1 coherence feature and 2 MPC features, which
resulted in the identical classification accuracy (95.8%). From
the results, we could observe the following facts:
® The use of slightly more qEEG features may enhance the
classification accuracy. When we tested the same process
for more than 5 qEEG features, however, we couldn’t get
any more improvement in the classification accuracy.
® The use of MPC instead of EEG coherence showed slight
improvement in the classification accuracy in the
4-dimensional case, but it could hardly be generalized.
® The combinational use of coherence and MPC showed
some improvement in the classification accuracy, compared
to the conventional EEG coherence results. The results
are consistent with those of the previous 2-dimensional
case study presented in Figs. 2 and 3.

In summary, the results of our study demonstrated that the
complementary use of MPC together with the coherence may
enhance the overall diagnostic accuracy, compared to that of
the conventional EEG coherence. These preliminary results
are thought to be meaningful since we can now try another
promising measure other than EEG coherence in order to
enhance the diagnosis accuracy of AD.

IV. CONCLUSIONS

In the present study, we extracted qEEG variables from
MPC and EEG coherence evaluated for all possible combinations
of electrode pairs. Some examples adopting the extracted
qEEG variables demonstrated that the use of MPC as a
supplementary or alternative measure may enhance accuracy
of diagnosis of AD, which can provide us with more degrees
of freedom when one chooses QEEG features.

In our case studies, we sometimes observed that the smaller
p-value does not always guarantee the higher classification
accuracy. Although the #-test between any two distributions is

the most widely-used method to extract meaningful qEEG
features, application of other measures which can reflect the
separation more clearly might be needed for our future studies.
In addition, validation and comparison of various classification
algorithms, such as feed-forward neural network, partial least
squares, and so on [14], with the extracted qEEG variables
will be also performed in our future studies.
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