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Prevention of Lung Cancer: Future Perspective with Natural 
Compounds
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USA

Lung cancer remains the most common cause of cancer death in the United States and worldwide. About 80∼90% 
of cases are smoking-related and smoking cessation programs are of great importance in reducing lung cancer 
risk. However, the lifetime risk for lung cancer remains elevated even in ex-smokers. Chemoprevention holds the 
promise to further reduce this risk and thus to decrease lung cancer incidence and mortality. Over the last decades, 
most chemoprevention trials for lung cancer have yielded negative outcomes. Population-based studies suggest 
that high intake of certain foods such as soy, red wine or green vegetables may be associated with decreased 
cancer risk. Because of these observations and their general safety, a plethora of natural compounds is currently 
being studied for the chemoprevention of cancer. In this review we discuss promising in vitro and in vivo data 
of novel natural compounds, their interference with molecular mechanisms responsible for lung cancer 
development and potential implications for their further preclinical and clinical investigation.
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Introduction

1. Clinical background

  With an estimated 1.5 million new cases annually and 

an estimated 1.3 million deaths worldwide in 2007, lung 

cancer remains the most deadly malignancy
1
. Cigarette 

smoking is its major risk factor, with an estimated 90% 

of all lung cancers being directly attributable to smoke 

carcinogens. Smoking cessation efforts have had a ma-

jor impact on lung cancer rates and mortality in the 

United States2. The continued increase in tobacco con-

sumption worldwide, however, has led the World 

Health Organization (WHO) to estimate that all cancer 

rates could rise by 50% to 15 million annual cases by 

the year 2020. It is well established that smoking can 

create a molecular field defect in the airway epithelium 

of susceptible individuals. Consequently, the individual 

lung cancer risk of former smokers remains perma-

nently elevated even years after successful cessation
3
. 

The high death rate of lung cancer combined with the 

lack of effective screening strategies and the persistently 

elevated lung cancer risk in former smokers has led to 

an early interest in chemoprevention strategies.

  For the last decades, cancer prevention was mainly 

directed at the identification and avoidance of carcino-

gens. The principles of “chemoprevention”, defined as 

the use of synthetic or natural substances to inhibit pro-

gression towards cancer or to reverse premalignant mo-

lecular changes, were established in the 1970s by Sporn 

and coworkers
4
. In breast, prostate, and colon cancer, 

this principle has subsequently been validated
5-7

. The 

NASBP-P1 trial showed a 43% relative risk reduction for 

breast cancer in high risk women treated with tamox-

ifen
5
. Finasteride led to a 24% decrease in relative pros-

tate cancer risk in one study. However these findings 

have largely not been translated into clinical practice 

due to the increased risk for high grade prostate cancer 
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in finasteride-treated patients
7
. Finally, in subjects with 

mutations in the APC gene, treatment with high dose 

celecoxib led to a significant reduction in adenomatous 

polyps
6
. In lung cancer however, despite intense efforts, 

most chemoprevention trials have so far yielded either 

negative or even harmful results.

2. What we have learned from the past

  Vitamin A or its derivatives were the first substances 

to be extensively studied in the prevention of aero-

digestive cancers. Strong epidemiologic evidence sug-

gested that there was an inverse relationship between 

vitamin A levels and lung cancer incidence. Further-

more, in vitro and mouse data showed a strong putative 

anticancer effect. Based on these very promising data, 

four large randomized studies with more than 100,000 

subjects overall were conducted8-11. Shockingly, these 

studies not only failed to show any benefit of chemo-

prevention with beta-carotene, but demonstrated an in-

creased risk of lung cancer in the beta-carotene cohort, 

for the most part due to an increase in individuals who 

continued to smoke actively
8,10

. Naturally occurring reti-

noids were subsequently replaced with synthetic reti-

noids which offered the advantage of better tolerability 

and bioavailablity. Treatment with 13-cis-retinoic acid 

(isotretinoin) yielded very interesting results in the sec-

ondary and tertiary prevention of head and neck can-

cer
12

. For the prevention of lung cancer however, iso-

tretinoin proved ineffective and, like beta-carotene, 

harmful in active smokers
13
. The molecular basis for the 

increased lung cancer risk with retinoids in active smok-

ers has not been fully understood so far.

  The development of selenium as a chemopreventive 

compound for lung cancer has followed a similar path. 

Epidemiologic studies suggested an inverse relationship 

between selenium blood levels and the incidence of 

several cancers, including lung cancer. It was hypothe-

sized that as a cofactor to glutathione synthase, sele-

nium would be able to reduce oxidative stress. Initial 

clinical studies were promising. In the Nutritional 

Prevention of Cancer (NPC) study, there was a statisti-

cally significant reduction in the secondary endpoints of 

lung, prostate and colorectal cancer incidence in 1,312 

patients with a history of skin cancer that were random-

ized to receive 200 μg selenium daily or placebo
14

. 

With an additional 3 years of follow-up this difference 

disappeared, however15. Based on the promising initial 

analysis of the NPC study, a large study with 35,533 

healthy men was planned with the primary endpoint of 

prostate cancer prevention and secondary endpoints of 

the prevention of other cancers, including lung
16

. This 

was a four-arm study that randomized participants to 

placebo, vitamin E, selenium or selenium combined 

with vitamin E. There was no significant difference in 

any of the primary and secondary endpoints. There 

was, however, a non-significant trend towards increased 

cancer risk with vitamin E and towards diabetes mellitus 

with selenium, highlighting again the fact that despite 

promising preliminary data, patients may actually incur 

harm while participating in a chemoprevention trial with 

seemingly benign compounds. For the tertiary preven-

tion of lung cancer, selenium is currently being tested 

in a placebo-controlled study by the Eastern Cooper-

ative Oncology Group (ECOG 5597) in patients with 

completely resected non small cell lung cancer (NSCLC). 

This trial has recently been closed to accrual due to the 

Data Monitoring Committee’s conclusion that it was un-

likely to meet its endpoint.

  The experience from these trials that involved consid-

erable time and expense and large numbers of patients 

has led many investigators to pursue the identification 

of histologic and molecular surrogate markers that could 

be used to screen compounds for possible activity much 

more expeditiously.

3. Surrogate endpoints in lung cancer chemopreven-

tion studies

  Surrogate endpoints are frequently used to evaluate 

the efficacy of a given compound in smaller cohorts of 

patients than those necessary to prove a reduction in 

lung cancer-related mortality. Requirements for a clin-

ically useful surrogate endpoint are its involvement in 

carcinogenesis, its differential expression between nor-

mal and premalignant tissue, a high prevalence in pre-



Tuberculosis and Respiratory Diseases Vol. 69. No. 1, Jul. 2010

3

Figure 1. Structures of phytochemical compounds with potential for lung cancer chemoprevention.

malignancy and malignancy, being targeted by the inter-

vention and having little or no fluctuation without the 

intervention
17

. Most ongoing chemoprevention trials 

currently use a combination of histologic endpoints, 

proliferation markers and molecular endpoints that are 

specific to the agent tested.

  An important consideration is the selection of patients 

for lung cancer chemoprevention trials, particularly if 

histologic regression of progenitor lesions is a surrogate 

endpoint. Squamous metaplasia has a high spontaneous 

regression rate and the metaplasia index is also fre-

quently reduced in the placebo arms of chemopreven-

tion trials. High grade lesions regress less frequently. 

Bronchial dysplasia as detected by bronchoscopy, how-

ever, is rare in unselected patients at risk for lung 

cancer. A large bronchoscopy trial for the evaluation of 

autofluorescence bronchoscopy and several chemo-

prevention trials have shown a prevalence of dysplasia 

or worse in about 3∼4% of all biopsied lesions
18-20

. In 

patients in which atypia is detected in expectorated spu-

tum, this prevalence rises to 30% of all biopsied le-

sions
21,22

 and 30∼80% of patients undergoing broncho-

scopy will harbor at least one dysplastic or higher grade 

lesion
21-23

.

  A clear understanding of the pathways targeted by a 

chemopreventive compound will allow the definition of 

additional surrogate endpoints based on the pharmaco-

logic and molecular effects of a particular agent. A thor-

ough preclinical evaluation of any compound of interest 

is therefore mandatory.

Promising Phytochemicals for Lung Cancer 

Chemoprevention

1. Tea polyphenols

  Tea is among the most widely consumed beverages 

worldwide. Epigallocatechin-3-gallate (EGCG) (Figure 

1) is the most prevalent polyphenol in green tea and 

a powerful antioxidant. Epidemiologic studies link 

green tea consumption to the decreased risk of breast, 

prostate, and lung cancer. In vitro, EGCG inhibits multi-

ple critical pro-carcinogenic pathways (Table 1). Epige-
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Table 1. Phytochemicals with potential lung cancer chemopreventive effects

Agent Natural source
Lung cancer 

chemoprevention trial
Mechanism of action Molecular target Synergy

Green tea 
polyphenols

Camellia sinensis 
(green tea)

British Columbia 
Cancer Agency; 
University of Arizona

Antioxidant, 
antiinflammatory, anti-
angiogenesis, apoptosis

DNMT1, EGFR, AKT, 
p53, p73, NF-kB, 
mVEGF, COX-2

Curcumin, er-
lotinib, luteolin, 
genistein

Isothiocyanates Cruciferous 
vegetables 
(broccoli, cab-
bage, kale)

Masonic Cancer 
Center, University of 
Minnesota; Johns 
Hopkins University

Inhibition of phase I 
enzymes, induction of 
phase II enzymes, cell 
cycle arrest, antiangio-
genesis, apoptosis

Nrf-2 upregulation, 
phase I and phase II 
enzymes, VEGF, cas-
pase2, p53, SIRT1

EGCG

Luteolin Artichoke, broccoli, 
celery, spinach, 
cauliflower

Emory University (in 
preparation)

Antioxidant, antiprolife-
rative, antiinflammatory

p53, p21, BAX, EGFR, 
IGF-1R, AKT, NF-kB, 
CDK

EGCG

Calciferol Fish, fortified milk Roswell Park Cancer 
Institute

Antiinflammatory,
antiproliferative

Vitamin D receptor, 
E-cadherin, cdks

Genistein

Resveratrol Red wine, red 
grapes

None currently Antiinflammatory, 
antioxidant, 
antiproliferative

Glutathione, AKT, 
NF-κB, p53, p21, 
BAX

EGCG, quercitin, 
luteolin, gen-
istein

Curcumin Curcuma longa 
(turmeric)

None currently Antiinflammatory, 
antiproliferative, 
antiangiogenic

EGFR, IGFR, AKT, 
NF-κB, p53, p21, 
Bax, VEGF

EGCG, genistein, 
retinoic acid

Genistein Soybeans None currently Antiinflammatory, 
antiproliferative, 
antiangiogenic

DNMT1, HDAC, AKT, 
survivin, p53, p21, 
Bax, ER, IGF-1R

EGCG, 
resveratrol, 
vitamin D

EGFR: epidermal growth factor receptor; EGCG: epigallocatechin-3-gallate.

netic effects
24

 and inhibition of the Ras-GTPase-activat-

ing protein SH3 domain-binding protein 1 (G3BP1) con-

stitute the underlying functional mechanism
25

. In xeno-

graft models, green tea extract inhibits colon cancer 

growth and breast cancer metastasis. EGCG has com-

pleted a phase I clinical trial for the treatment of chronic 

lymphocytic leukemia (CLL)
26

 and a phase II trial for 

the short-term, pre-operative treatment of prostate can-

cer
27

 in the phase I study, doses were escalated to as 

high as 2,000 mg bid and no dose limiting toxicity was 

observed. In the phase II study, green tea polyphenon 

E (PPE) with an EGCG equivalent of 800 mg was given 

once daily without any discernable toxicity
26,27

. Median 

initial reports suggested a possibility of hepatotoxicity 

at higher doses of EGCG, although this was not ob-

served in either one of these studies. In both studies, 

responses either in terms of lymphocyte reduction or 

PSA reduction were observed
26,27

. After single-dose ad-

ministration of an 800 mg dose of EGCG, plasma levels 

peaked at around 400 ng/mL
28

 and trough concen-

trations at 3 ng/mL26. In lung cancer cell lines, EGCG 

can induce apoptosis
29

 and synergize with celecoxib
30

 

and erlotinib
31

. Green tea extract is currently being in-

vestigated in two clinical studies including a trial for the 

secondary prevention of lung cancer in subjects with 

bronchial dysplasia and as adjunct to therapy with erlo-

tinib in the second-line setting for the treatment of ad-

vanced NSCLC (clinicaltrials.gov).

2. Broccoli extract

  Sulforaphane is one of the major derivatives of crucif-

erous vegetables and broccoli extract in particular. The 

enzyme myrosinase transforms the broccoli glyco-

sinolate constituent glucoraphanin into the isothiocy-

anate-form sulforaphane (Figure 1). Other isothiocyan-

ates are similarly derived from the hydrolysis of glyco-

sinolates in other cruciferous vegetables. Epidemiologic 

studies have linked high intake of these vegetables to 
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decreased risk of lung
32
, colon, breast and prostate can-

cer. Sulforaphane and other isothiocyanates target multi-

ple cellular processes. Traditionally, it had been as-

sumed that the major mechanism of action was medi-

ated through induction of the Nrf-2 transcription factor 

and the induction of phase II detoxifying enzymes. 

However, additional mechanisms are related to in-

hibition of phase I enzymes in the cytochrome p450 sys-

tem which mediates the activation of many tobacco 

carcinogens. Sulforaphane and other isothiocyanates 

can induce apoptosis in various cancer cell lines, acti-

vate p53 signaling, cause cell cycle arrest, inhibit angio-

genesis and cause microtubular disruption (Table 1). 

Broccoli extracts were evaluated in a phase I study of 

healthy subjects given two different doses of the glyco-

sinolate glucoraphanin and the isothiocyanate sulfora-

phane. Thyroid, liver, hematologic and renal parameters 

were monitored closely and no significant toxicities 

were observed
33

. Broccoli extract and other isothiocy-

anates are currently being evaluated for the prevention 

of lung cancer in active smokers (clinicaltrials.gov).

3. Luteolin

  Luteolin is a flavonoid (Figure 1) that is abundant in 

green vegetables such as artichoke, celery, spinach, 

green pepper and cauliflower. Both anti-inflammatory 

properties and anti-cancer properties have been des-

cribed. Luteolin causes cell cycle arrest and apoptosis 

in a variety of cancer cell types. In mouse xenograft 

models, luteolin inhibited prostate cancer metastasis
34

. 

In gastric cancer cell lines synergy between luteolin and 

cisplatin was observed35. Luteolin proved effective in 

colon
36

 and breast cancer
37

 prevention in rodent mo-

dels. Preliminary data from our institution show synergy 

between luteolin and EGCG in lung and head and neck 

cancer cell lines. Based on these data, we are currently 

preparing a phase I study to evaluate the safety and 

pharmacodynamics of luteolin and EGCG for the secon-

dary prevention of lung cancer.

4. Calciferol

  Vitamin D deficiency is a common phenomenon in 

the developed world, with studies suggesting that as 

many as 75% of American adults and adolescents are 

vitamin D deficient
38

. Numerous epidemiologic studies 

have found links between vitamin D deficiency and can-

cer, most notably breast, colon, and lung cancer, with 

a relative risk reduction in vitamin D-exposed versus 

non-exposed subjects ranging between 25∼50%
39

. A 

recent update of the Women’s Health Study showed a 

lower risk for the development of breast cancer (Hazard 

Ratio 0.65) in premenopausal women with the highest 

vs. the lowest amount of vitamin D consumption40. 

Cholecalciferol, the active form of vitamin D (Figure 1), 

is a steroid hormone. Forming a complex with its re-

ceptor, it acts as a transcription factor that regulates cell 

cycle control by regulating p21 and cdk expression. It 

furthermore leads to transcription of E-cadherin, the loss 

of which is a hallmark of epithelial-mesemchymal tran-

sition associated with proliferation and invasion of the 

malignant cell. In biopsies of human bronchial epi-

thelium and lung cancer progenitor lesions, a pro-

gressive loss of cytoplasmic vitamin D receptor staining 

was observed with increasing histologic grade suggest-

ing the involvement of the vitamin D signaling path-

ways in lung carcinogenesis
41

. In a randomized study 

of vitamin D and calcium vs. placebo in postmeno-

pausal women at risk for osteoporosis, a statistically sig-

nificant reduction in the risk of developing any cancer 

was observed for women who took vitamin D and cal-

cium42. Sample size and cancer incidence rates, how-

ever, were low with very large confidence intervals so 

that these findings should only be considered to be hy-

pothesis generating.

  Vitamin D deficiency has also been associated with 

chronic obstructive lung disease (COPD), a major risk 

factor for the development of lung cancer. In the Third 

National Health and Nutrition Examination Survey 

(NHANES III), the pulmonary function parameters FEV1 

and FVC were significantly lower in subjects with the 

lowest quintile of vitamin D levels when compared with 

the highest quintile
43

. Certain polymorphisms in the vi-

tamin D binding protein (VDBP) seem to be protective 

against COPD
44

. Studies examining vitamin D supple-
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mentation for the prevention of lung cancer are cur-

rently ongoing (clinicaltrials.gov).

5. Resveratrol

  Resveratrol, a major component of red wine and 

grapes, has received significant recent attention, primar-

ily due to its cardioprotective effects and has been iden-

tified as the most important explanation of the “French 

Paradox” of significantly lower coronary heart disease 

rates in France compared with most other Western 

countries. Resveratrol is a phytoestrogen (Figure 1) and 

can act as an agonist of the estrogen receptor. The pos-

sible chemopreventive effects of resveratrol have been 

studied quite extensively in vitro45 and in multiple differ-

ent cell lines and various animal models. Like most oth-

er phytochemicals, resveratrol affects multiple pathways 

important for cancer development (Table 1). In animal 

models, resveratrol has been shown to be an effective 

chemopreventive compound against esophageal and 

breast cancer development46-48. In lung cancer chemo-

prevention models, the data are conflicting. In Balb/C 

mice, resveratrol inhibited the induction of benz(a)pyr-

ene-induced diol epoxide-DNA adducts consistent with 

its ability to inhibit phase I and phase II enzymes
49

. 

However, in A/J mice exposed to benz(a)pyrene, re-

sveratrol failed to inhibit lung cancer development50,51. 

A possible explanation for the strong in vitro activity but 

limited in vivo effectiveness is the low bioavailability of 

oral resveratrol52. Resveratrol was evaluated in a phase 

I study of healthy volunteers and found to be safe even 

at high doses
53

. Currently, resveratrol is under clinical 

investigation in studies with various vascular endpoints 

and in colon cancer. No specific study for the evalua-

tion of lung cancer has been registered with clini-

caltrials.gov.

6. Curcumin

  Curcumin is the major ingredient in the culinary spice 

turmeric. It has been well recognized for its chemo-

preventive properties in many solid tumors and lym-

phoma. Like other phytochemicals (Figure 1), it exerts 

its effects through the targeting of multiple different 

pathways (Table 1). In vitro, curcumin inhibits lung 

cancer cell growth, induces cell cycle arrest and apo-

tosis
54-56

. Curcumin has been tested in early clinical trials 

including those for the prevention of cancer and has 

been shown to be well tolerated57,58. In vitro, there is 

synergy with EGCG
59,60

, genistein and the chemothera-

peutics vinorelbine, 5FU and gemcitabine. The available 

preclinical data form a strong rationale for the potential 

role of curcumin in lung cancer chemoprevention, al-

though no active studies are currently listed at clini-

caltrials.gov.

7. Genistein

  Genistein is a soy isoflavone (Figure 1) and has been 

tested extensively in the prevention of prostate and 

breast cancer. Like resveratrol, genistein is a phyto-

estrogen. Its function is mainly regulated through the 

estrogen receptor beta. The molecular targets of genis-

tein are listed in Table 1. Genistein has been shown to 

enhance the effects of docetaxel61 and radiation62 in 

prostate cancer cells. In humans, a pilot study in subjects 

with prostate cancer and rising PSA treated with 100 mg 

of genistein per day demonstrated efficacy63. Given the 

important role of epigenetic changes in the development 

of lung cancer and given its presumed properties as an 

inhibitor of both the DNA methyltransferases (DNMTs) 

and histone deacetylases (HDACs), genistein is an attrac-

tive chemopreventive compound against lung cancer. In 

lung cancer cell lines, genistein has been shown to in-

duce apoptosis
64

 and to synergize with epidermal 

growth factor receptor tyrosine kinase inhibitors (EGFR 

TKIs)65. In a large population study from Japan, genis-

tein intake was reported to be correlated with reduced 

lung cancer incidence in never-smoking men, with a 

trend towards reduced lung cancer in never-smoking 

women, but not in active or former smokers
66

.

Molecular Pathways Commonly Involved 

in Lung Cancer

  Molecularly, lung cancer is a very heterogeneous 

disease. Recent research identifying activating EGFR 
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Figure 2. Molecular pathways affected by natural agents. EGCG: epigallocatechin-3-gallate.

mutations
67,68

 and the EML4-Alk translocation
69

 as well 

as the sequencing of the cancer genome of aden-

ocarcinomas has only limited impact on the chemo-

prevention field since most of these specific abnormal-

ities occur in non-smokers while smokers are the pri-

mary candidates for chemoprevention studies. A distinct 

advantage of chemoprevention with natural compounds 

is the fact that these generally target multiple carcino-

genic pathways in parallel. The likelihood of achieving 

successful lung cancer prevention in an individual pa-

tient might therefore increase.

1. Introduction to signaling pathways

  Mammalian cells require growth factor stimulation to 

take up nutrients from the environment. In contrast, 

cancer cells overcome this growth factor dependency by 

acquiring genetic mutations, the accumulation of which 

functionally changes receptor-initiated signaling path-

ways. Mutation or gene amplification of cell surface re-

ceptors (such as EGFR) activates multiple downstream 

signaling cascades (Figure 2) responsible for carcino-

genesis. PI3K-AKT-mTOR and Ras-MAPK are two major 

signaling pathways constitutively activated in cancer 

cells. Loss/mutation of PTEN, expression of PI3KCA 

(mutation of PI3K which constitutively activates PI3K- 

AKT signaling) or mutation of K-ras/H-ras also contrib-

ute to the activation of PI3K-AKT-mTOR signaling. 

K-Ras/H-Ras mutations also constitutively activate the 

MAPK pathway. Moreover, activation of the Wnt path-

way was observed in many cancers contributing to the 

activation of mTOR signaling. Loss of LKB1, an im-

portant signaling molecule in the LKB1-AMPK metabolic 

pathway is also found in many cancers and is linked 

to mTOR signaling. Interactions between these signaling 

pathways and their modulations by various natural com-

pounds are shown in Figure 2.
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2. Epigenetic changes in gene regulation

  Under normal circumstances, epigenetic mechanisms 

of gene regulation play a major role in stem cell main-

tenance and the imprinting of the second female X- 

chromosome. In lung cancer, it is well established that 

epigenetic events occur early on in carcinogenesis
70-72

. 

Silencing of tumor suppressor genes by methylation of 

CpG islands in the promoter regions of genes or alter-

ations of the histone code have been well established 

in lung cancer for critical cell cycle genes such as p16, 

DNA repair genes such as MGMT and hMLH-1, apopto-

sis inducers such as DAPK and genes involved in the 

ras-(RASSF1) and the wnt-signaling pathways (SFRP 1, 

2, 4, 5, APC, LKB1). In a cell culture model, siRNA 

knockdown of DNMT1 prevented smoke carcinogen-in-

duced transformation of normal human bronchial epi-

thelial cells
73
 and combined pharmacologic inhibition of 

DNMTs and HDACs prevented the formation of murine 

lung cancer74. In humans, early clinical trial data suggest 

that the combination of the HDAC inhibitor etinostat 

and the DNMT inhibitor 5’ azacytidine may be an active 

combination for the treatment of lung cancer. The main 

constituent of green tea, EGCG
24
 and the soy isoflavone 

genistein
75,76

 have also been shown to inhibit DNMT at 

concentrations that can achieved in vivo, thus making 

these two agents very attractive candidates for lung can-

cer chemoprevention. In addition, genistein may inhibit 

HDACs77.

3. EGFR-RAS-MAPK pathway

  Activating mutations in the EGF signaling pathway, 

either in EGFR itself
67,68

 or in its downstream targets 

k-ras and b-raf, highlight its relevance for lung cancer 

carcinogenesis78. Inhibition of this pathway with the 

EGFR-TKIs erlotinib and gefitinib is particularly effective 

for the treatment of NSCLC in EGFR-mutated tumors
79

, 

but also shows activity in EGFR wildtype tumors as long 

as no additional k-ras or b-raf mutations are present
80

. 

EGFR overexpression in bronchial dysplasia is frequent, 

implicating it as an early event in lung cancer carcino-

genesis
81

. EGCG
31

, curcumin
82

 and luteolin
83-85

 have all 

been shown to inhibit EGFR signaling.

4. PI3Kinase-AKT-mTOR pathway

  It has been estimated that Akt is one of the most fre-

quently activated protein kinases in human cancer. The 

PI3Kinase-Akt-mTOR pathway acts downstream from re-

ceptor tyrosine kinases such as EGFR, IGFR, c-met and 

ERBB3. Activation of the Akt pathway has been recog-

nized as a major mechanism of acquired resistance to 

EGFR-TKIs in NSCLC. Two physiologic inhibitors pro-

vide additional checks and balances in this pathway: 

PTEN acts upstream from Akt and is frequently in-

activated in NSCLC in part due to promoter hyper-

methylation; and the TSC1/TSC2 complex prevents acti-

vation of mTOR. Alterations in these genes are asso-

ciated with tuberous sclerosis and lymphangioleimyoma-

tosis, which form benign tumors but have not been con-

clusively associated with lung cancer. Many phyoto-

chemicals have been shown in cancer cell lines to inhibit 

AKT-mTOR signaling such as EGCG86,87, curcumin88-90, 

resveratrol
91,92

, genistein
93,94

, pomegranate
95

 and lyco-

pene
96

.

5. Wnt-signaling pathway

  The wnt-signaling pathway plays a crucial role in em-

bryonal development and cancer. While the predom-

inant oncogenic pathway in colorectal cancer, recent re-

search has also shown a major contribution to pulmo-

nary carcinogenesis. The pathway is tightly regulated 

through a network of wnt-antagonists, many of which 

have been shown to be abnormally regulated through 

epigenetic means in NSCLC97. Activation of the wnt-sig-

naling pathway has also been associated with an in-

creased rate of brain and bone metastasis in lung can-

cer98. The phytochemicals EGCG99-101, curcumin102-104, 

murrayafoline A, an alkaloid isolated from the glycosmis 

stenocarpa root
105

, and broccoli-derived sulforophane
106

, 

have been shown to inhibit wnt-signaling in cancer 

models
106

. EGCG inhibits wnt-signaling both through 

epigenetic means as well as through upregulation of the 

transcriptional repressor HBP-1100.
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6. DNA-adduct formation

  Tobacco smoke, the major risk factor for NSCLC, con-

tains a large number of carcinogens including polycyclic 

hydrocarbons. Benz(a)pyrene and its active metabolite 

benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) form sta-

ble DNA adducts by reacting with guanine bases in the 

DNA. Carcinogen activation frequently depends on cy-

tochrome p450 pathways. Targeting these and other 

smoke carcinogens for the prevention of lung cancer is 

therefore a potentially attractive approach. Chemopre-

ventive strategies currently under investigation aim at in-

creasing the detoxification enzymes which are involved 

in carcinogen metabolism or inhibition of carcinogen 

activation. Glucosinolates, a component of cruciferous 

vegetables, are currently under investigation for their 

presumed chemopreventive properties. Upon ingestion, 

these compounds are metabolized to various break-

down products including isothiocyanates, which have 

been shown to inhibit cytochrome p450-dependent car-

cinogen activation. The transcription factor Nrf-2 plays 

a major role in the induction of detoxification enzymes 

and in the response to oxidative stress. Nrf-2 －/－ 

mice are more susceptible to benz(a)pyrene-induced tu-

mor formation and to oxidative stress
107

. Induction of 

Nrf-2 expression by either natural or synthetic com-

pounds as a chemopreventive strategy against tobacco 

smoke-related cancers has received considerable inter-

est. Nrf-2 levels can be upregulated by broccoli-derived 

sulforaphane
108,109

, dibenzyolmethane
110

, an ingredient 

of licorice, and the synthetic drug oltipraz
111

. Oltipraz 

has been tested in a randomized chemoprevention 

study for lung cancer but failed to meet its primary end-

point of PAH-DNA adduct formation and its secondary 

endpoint of decreasing PAH blood levels. Moreover, it 

caused significant gastrointestinal toxicity
112

.

7. Cell metabolism pathway

  Unlike normal differentiated cells, most cancer cells 

rely on aerobic glycolysis (conversion of glucose to lac-

tate regardless of the availability of oxygen) to generate 

the energy needed for cellular processes. The LKB1- 

AMPK (AMP-activated kinase) signaling pathway is one 

of the master regulators of cellular metabolism. In case 

of adenosine triphosphate (ATP) depletion, the ad-

enylate kinases convert two adenosine diphosphates 

(ADPs) to one ATP and one adenosine 5’-monophos-

phate (AMP). However, accumulation of AMP activates 

AMPK which is dependent on LKB1. Activation of 

LKB1-AMPK signaling leads to phosphorylation of sev-

eral downstream targets to improve energy charge in 

cells and inhibits mTOR signaling, an important path-

way for protein synthesis. Activators of AMPK such as 

metformin, phenformin, and aminoimidazole carbox-

amide ribonucleotide were reported to inhibit tumor cell 

growth or prevent tumor development113-116. Studies 

suggest that many natural compounds including EGCG, 

resveratrol, genistein and curcumin are activators of the 

LKB1-AMPK signaling pathway which contribute to their 

antitumor or chemopreventive potential. The apoptotic 

effect of EGCG on colon cancer is mediated via activa-

tion of AMPK signaling117. The anti-obesity effects of 

EGCG, i.e., suppression of hepatic gluconeogenesis or 

inhibition of adipogenesis, and of genistein are also 

mediated via AMPK pathways118,119. It is now well ac-

cepted that inhibition of obesity is associated with re-

duced risk of cancers. Multiple studies also suggest that 

resveratrol can activate the AMPK signaling cascade 

which is associated with its chemopreventive ef-

fects
120-122

. In an ovarian cancer cell line, the apoptotic 

effect of curcumin is mediated via activation of the 

AMPK-p38 signaling pathway
123

. Other natural com-

pounds modulating the LKB1-AMPK signaling cascade 

include the dietary flavonoid quercetin124, ginseno-

side
125

, caffeic acid
126

, and berberine
127

.

Conclusions

  Smoking cessation and abstinence programs are the 

single most important preventive strategy against lung 

cancer. Unfortunately, the lag time until this effect can 

be observed is measured in decades and many patients 

with prior tobacco exposure will not benefit. Lung can-

cer mortality rates remain high with an estimated 75∼
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80% of all lung cancer patients ultimately succumbing 

to their disease. Therefore, even a moderately effective 

chemopreventive compound promises to reduce lung 

cancer deaths more significantly than all other clinical 

treatment strategies combined. Large chemoprevention 

trials in the past have highlighted the challenges of 

translating exciting epidemiologic, in vitro and in vivo 

observations into clinically beneficial results. Better un-

derstanding of the molecular events and pathways lead-

ing to field cancerization and lung cancer development 

has dramatically improved our ability to identify promis-

ing compounds. The potential role of phytochemicals 

is particularly exciting given their non-toxic nature, their 

abundance in our normal food chain and the fact that 

they generally target many cellular processes which 

might contribute to lung carcinogenesis.
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