DOI QR코드

DOI QR Code

New Paradigms in the Pathogenesis of Chronic Obstructive Pulmonary Disease

만성 폐쇄성 폐질환의 새로운 병인

  • Kim, Hui-Jung (Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sanbon Medical Center, Wonkwang University School of Medicine)
  • 김휘정 (원광대학교 의과대학 산본병원 호흡기내과학교실)
  • Received : 2010.06.02
  • Accepted : 2010.06.02
  • Published : 2010.11.30

Abstract

A key mechanism in the pathogenesis of chronic obstructive pulmonary disease is thought to be an abnormal inflammatory response in the lungs to the inhalation of toxic particles and gases, derived from tobacco smoke, air pollution, and/or occupational exposures. This review highlights the potential participation of several alternative pathogenetic processes, particularly involving the potential participation of biological and pathobiological processes related to aging, including oxidative stress and enhanced expression of markers of senescence/aging in emphysematous lungs, and the potential for enhanced tissue destruction involving alveolar cell apoptosis.

Keywords

References

  1. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet 2006;367:1216-9. https://doi.org/10.1016/S0140-6736(06)68516-4
  2. Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 2001;163:737-44. https://doi.org/10.1164/ajrccm.163.3.2002117
  3. Henson PM, Cosgrove GP, Vandivier RW. State of the art. Apoptosis and cell homeostasis in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3:512-6. https://doi.org/10.1513/pats.200603-072MS
  4. Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 2006;129:1673-82. https://doi.org/10.1378/chest.129.6.1673
  5. Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest 2009;135:173-80. https://doi.org/10.1378/chest.08-1419
  6. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360:2445-54. https://doi.org/10.1056/NEJMra0804752
  7. MacNee W. Oxidative stress and chronic obstructive pulmonary disease. Eur Respir Mon 2006;38:100-29.
  8. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 2006;28:219-42. https://doi.org/10.1183/09031936.06.00053805
  9. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005;352:1967-76. https://doi.org/10.1056/NEJMoa041892
  10. Barnes PJ. Theophylline for COPD. Thorax 2006;61: 742-3. https://doi.org/10.1136/thx.2006.061002
  11. Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc 2006;3:503-10. https://doi.org/10.1513/pats.200603-054MS
  12. Lou Z, Chen J. Cellular senescence and DNA repair. Exp Cell Res 2006;312:2641-6. https://doi.org/10.1016/j.yexcr.2006.06.009
  13. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 2007;1100:60-74. https://doi.org/10.1196/annals.1395.005
  14. Boukamp P. Ageing mechanisms: the role of telomere loss. Clin Exp Dermatol 2001;26:562-5. https://doi.org/10.1046/j.1365-2230.2001.00903.x
  15. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem 2006;75: 435-65. https://doi.org/10.1146/annurev.biochem.74.082803.133500
  16. Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177:861-70. https://doi.org/10.1164/rccm.200708-1269OC
  17. Marwick JA, Caramori G, Stevenson CS, Casolari P, Jazrawi E, Barnes PJ, et al. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med 2009;179:542-8. https://doi.org/10.1164/rccm.200810-1570OC
  18. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127:1109-22. https://doi.org/10.1016/j.cell.2006.11.013
  19. Suga T, Kurabayashi M, Sando Y, Ohyama Y, Maeno T, Maeno Y, et al. Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am J Respir Cell Mol Biol 2000;22:26-33. https://doi.org/10.1165/ajrcmb.22.1.3554
  20. Sato T, Seyama K, Sato Y, Mori H, Souma S, Akiyoshi T, et al. Senescence marker protein-30 protects mice lungs from oxidative stress, aging, and smoking. Am J Respir Crit Care Med 2006;174:530-7. https://doi.org/10.1164/rccm.200511-1816OC
  21. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 2002;109:661-70. https://doi.org/10.1172/JCI0213572
  22. Ferrara F, D'Adda D, Falchi M, Dall'Asta L. The macrophagic activity of patients affected by pneumonia or chronic obstructive pulmonary disease. Int J Tissue React 1996;18:109-14.
  23. Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A, et al. Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2001;280:L39-49.
  24. McDonald PP, Fadok VA, Bratton D, Henson PM. Transcriptional and translational regulation of inflaminflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. J Immunol 1999;163:6164-72.
  25. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A 2000;97:5972-7. https://doi.org/10.1073/pnas.100448997
  26. Honda Y, Takahashi H, Kuroki Y, Akino T, Abe S. Decreased contents of surfactant proteins A and D in BAL fluids of healthy smokers. Chest 1996;109:1006-9. https://doi.org/10.1378/chest.109.4.1006
  27. Morimoto K, Janssen WJ, Fessler MB, McPhillips KA, Borges VM, Bowler RP, et al. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 2006;176:7657-65. https://doi.org/10.4049/jimmunol.176.12.7657
  28. Voelkel N, Taraseviciene-Stewart L. Emphysema: an autoimmune vascular disease? Proc Am Thorac Soc 2005; 2:23-5. https://doi.org/10.1513/pats.200405-033MS
  29. Gadgil A, Zhu X, Sciurba FC, Duncan SR. Altered T-cell phenotypes in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:487-8. https://doi.org/10.1513/pats.200603-064MS
  30. Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301-5. https://doi.org/10.1126/science.1071059
  31. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 2007;147:199-207. https://doi.org/10.1111/j.1365-2249.2006.03203.x
  32. Bratke K, Klug M, Bier A, Julius P, Kuepper M, Virchow JC, et al. Function-associated surface molecules on airway dendritic cells in cigarette smokers. Am J Respir Cell Mol Biol 2008;38:655-60. https://doi.org/10.1165/rcmb.2007-0400OC
  33. Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE, et al. Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:998-1005. https://doi.org/10.1164/rccm.200608-1113OC
  34. Di Stefano A, Caramori G, Capelli A, Gnemmi I, Ricciardolo FL, Oates T, et al. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. Eur Respir J 2004;24:78-85. https://doi.org/10.1183/09031936.04.00080303
  35. Freeman CM, Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol 2007;171:767-76. https://doi.org/10.2353/ajpath.2007.061177
  36. Shapiro SD. End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on. Am J Respir Crit Care Med 2001;164:339-40. https://doi.org/10.1164/ajrccm.164.3.2105072c
  37. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007; 13:567-9. https://doi.org/10.1038/nm1583
  38. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:156-63. https://doi.org/10.1164/rccm.200701-014OC