Influence of Calcium Supply on the Growth, Calcium and Oxalate Contents, Mineral Nutrients and Ca-oxalate Crystal Formation of Cucumber

오이생육, 칼슘, 옥살산 및 무기성분 함량 및 칼슘-옥살산염 형성에 대한 칼슘처리 효과

  • Sung, Jwa-Kyung (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Su-Yeon (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ye-Jin (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Kim, Rog-Young (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ju-Young (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Jong-Sik (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Jang, Byoung-Choon (Division of Soil and Fertilizer Management, NAAS, RDA)
  • 성좌경 (국립농업과학원 토양비료관리과) ;
  • 이수연 (국립농업과학원 토양비료관리과) ;
  • 이예진 (국립농업과학원 토양비료관리과) ;
  • 김록영 (국립농업과학원 토양비료관리과) ;
  • 이주영 (국립농업과학원 토양비료관리과) ;
  • 이종식 (국립농업과학원 토양비료관리과) ;
  • 장병춘 (국립농업과학원 토양비료관리과)
  • Received : 2010.08.02
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

Although the roles of calcium in plant are widely known, little is known about on an antagonistic effect of macro elements, oxalate biosynthesis and main shape of crystal in cucumber plant organs. Seeds of cucumber (Cucumis sativus cv. Ijoeunbackdadagi) were germinated in perlite tray supplied with distilled-deionized water. Seedlings were transplanted into aerated containers with a half strength of Ross nutrient solution. Ca levels treated in media were as follows; No-Ca, $Ca(NO_3)_2$ 0.25, 1.25 and 2.5 mmol $L^{-1}$, and $Ca(NO_3)_2$ 2.5 mmol $L^{-1}$ + $CaCl_210$, 25 and 50 mmol $L^{-1}$. Ca-deficient and -excessive conditions severely reduced cucumber growth, as compared to the control, and adversely affected an accumulation of macro elements (N, P, K, and Mg). Calcium favorably induced oxalate (acid-soluble) synthesis in leaves and roots of cucumber plant, but not in stem. Acid-soluble oxalate contents in leaves proportionally increased with Ca supply levels (0.91, P<0.001), however, this pattern was not observed in stem and roots. Ca-oxalate crystal formation and compositional analysis were examined using SEM-EDS technique in cucumber leaves. The main type of crystal revealed a prismatic crystal and main components were Ca, Na and Cl.

식물체 내에서 칼슘의 역할에 대하여 광범위하게 알려져 있지만, 다량원소의 흡수와 축적 및 옥살산 합성에 대한 칼슘의 영향에 대한 연구는 미비한 실정이다. 본 연구는 칼슘 결핍 또는 과잉에 따른 오이생육, 다량원소 흡수, 옥살산 합성 및 칼슘-옥살산 crystal 형성에 대하여 알아보고자 수행하였다. 칼슘의 결핍 또는 과잉조건하의 오이 생육과 다량원소의 흡수는 크게 저해되는 경향을 보였으며, 특히 마그네슘과는 정반대의 흡수패턴을 보였다. 칼슘처리의 증가는 오이 잎과 뿌리 중 옥살산 함량을 증가시켰으며, 오이 엽 중 칼슘과 옥살산과의 상관관계는 매우 높은 것으로 나타났다 (0.91, P<0.001). 칼슘-옥살산 crystal의 주요 형태는 prismatic 이었고, crystal은 칼슘 처리량이 증가함에 따라 많이 생성되었다. 또한 crystal의 주요 구성성분은 칼슘, 나트륨 및 염소로 나타났다.

Keywords

References

  1. Borchert, R. 1985.Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta 165:301-310. https://doi.org/10.1007/BF00392226
  2. Borchert. R. 1986. Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia tracanthos L. Planta 168:571-578. https://doi.org/10.1007/BF00392278
  3. DeSilva D.L.R., A.M. Hetherington. and T. A. Mansfield. 1996. Where does all the calcium go?. Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell and Environment 19:880-886. https://doi.org/10.1111/j.1365-3040.1996.tb00424.x
  4. Foster, A.S. 1956. Plant idioblasts: remarkable examples of cell specialization. Protoplasma 46: 184-193. https://doi.org/10.1007/BF01248877
  5. Franceschi. V.R. 1989. Calcium Oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130-137. https://doi.org/10.1007/BF02079332
  6. Franceschi, V.R. 2001. Function of calcium oxalalccrystals in plants. Trends Plant Sci. 6:331 https://doi.org/10.1016/S1360-1385(01)02014-3
  7. Franceschi, V.R. and H.T. Horner. 1980. Calcium oxalate crystals in plants. Botanical Review. 46:361-427. https://doi.org/10.1007/BF02860532
  8. Gallaher, R.N. 1975. The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci. Plant Anal. 6:315-330. https://doi.org/10.1080/00103627509366570
  9. Gallaher, R.N. and J.B. Jones. 1976. Total extractable, and oxalate calcium and other elements in normal and mouse ear pecan tree tissues. J. Am. Soc. Hortic. Sci. 101:6922- 6926.
  10. Hodgkinson, A. 1977. Oxalic acid metabolism in higher plants, in: Hodgkinson, A. (Ed.), Oxalic acid biology and medicine. Academic Press. New York. pp.131-158.
  11. Homer, H.T. and E. Zinder-Frank, 1982a. Calcium oxalate crystals and crystal cells in the leaves of Rhynchosia caribaes (Leguminosae: Papilionoideae). Protoplasma 111: 10-18. https://doi.org/10.1007/BF01287642
  12. Horner, H.T. and E. Zindler-Frank. 1982b. Histochemical. Spectroscopic, and x-ray diffraction identifications of the two hydration forms of calcium oxalate crystals in three legumes and Begonia. Can. J. Bot.60:1021-1027. https://doi.org/10.1139/b82-128
  13. Jauregui-Zuniga, D., J.P. Reyes-Grajeda. J.D. Sepulveda-Sanchez, J.R. Whitaker, and A. Moreno. 2003. Crystallochemical characterization of calcium oxalate crystals isolated from seed coats of Phaseolus vulgaris and leaves of Vitis vinifera. J. of Plant Physiol. 160:239-245. https://doi.org/10.1078/0176-1617-00947
  14. Keates. S.A., N. Tarlyn, F.A. Loewus. and V.R. Franceschi. 2000. $_{L}-Ascorbic$ acid and $_{L}- galactose$ arc sources of oxalic acid and calcium oxalate in Pistia stratiotes., Phytochemistry 53:433-440. https://doi.org/10.1016/S0031-9422(99)00448-3
  15. Kinzel. H. 1989. Calcium in the vacuoles and cell walls of plant tissue. Flora 182:99-125. https://doi.org/10.1016/S0367-2530(17)30398-5
  16. Kirkby. E.A. and D.J. Pilbeam. 1984. Calcium as a plant nutrient. Plant Cell and Environment 7:397-405. https://doi.org/10.1111/j.1365-3040.1984.tb01429.x
  17. Kostman, T.A., N.M. Tarlyn. F.A. Loewus. and V.R. Franceschi. 2001. Biosynthesis of $_{L}-ascorbic$ acid and conversion of carbons 1 and 2 of $_{L}-ascorbic$ acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol. 125:634-640. https://doi.org/10.1104/pp.125.2.634
  18. Li. X.X. and V.R. Franceschi 1990. Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemma minorL. Eur. J. Cell Biol. 51:9-16.
  19. Libert, B. 1981. Rapid determination of oxalate acid by reverse-phase high performance liquid chromatography. Journal of Chromatography 210:540-543. https://doi.org/10.1016/S0021-9673(00)80349-0
  20. Libert. B. and V.R. Franceschi. 1987. Oxalate in crop plants. J. Agric. Food Chem. 35:926-928. https://doi.org/10.1021/jf00078a019
  21. Marschner. H. 1995. Mineral nutrition of higher plants. Acad. Press. London
  22. Sander, D., J. Pelloux, C. Brownlee. and J.F. Harper. 2002. Calcium at the crossroads of signaling. Plant Cell 14:401-417. https://doi.org/10.1105/tpc.002899
  23. Shouwu. G., M.D. Ward. and J.A. Wesson. 2002. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir 18:4284-4291. https://doi.org/10.1021/la011754+
  24. Walinga, I., W. Van Vark, V.J.G. Houba. and J.J. Vander Lee. 1989. Soil and plant analysis : Part 7. Plant analysis procedures. Wageningen Agricultural Univ., ageningen, The Netherlands pp.264
  25. Volk . G.M., V.M. Lynch- Holm, T.A. Kostman,and V.R. Franceschi. 2002. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes Ieaves. Plant Biol. 4:34-45. https://doi.org/10.1055/s-2002-20434
  26. White. P.J. and M.R. Broadley. 2003. Calcium in plants. Annals of Botany 92:487-511. https://doi.org/10.1093/aob/mcg164
  27. Yu L, X.X. Peng, C. Yang. Y.H. Liu, and Y.P. Fan. 2002. Determination of oxalaic acid in plant tissue and root exudates by reversed phase high performance1iquid chromatography. Chinese Journal of Analytical Chemistry 30:1119-1122.
  28. Zindler-Frank. E. 1975. On the formation of the pattern of crystal idioblasts in Canavalia ensiformis D.C.: Vii. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z. Pflanzenphysiol. 77:80-85. https://doi.org/10.1016/S0044-328X(75)80128-0
  29. Zindler-Frank, E., R. Honow, and A. Hesse. 2001. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J. of Physiol. 158:139-144.
  30. Zinder-Frank, E., E. Wichmann, and M. Korneli . 1988, Cells with crystals of calcium oxalate in the leaves of Phaseolus ulgaris - a comparison with those in Canavalia ensiformis. Bot. Acta 101:246-253. https://doi.org/10.1111/j.1438-8677.1988.tb00040.x