Optimization of gibberellic acid production by Methylobacterium oryzae CBMB20

지베렐린산 생산을 위한 Methylobacterium oryzae CBMB20의 최적 배양조건 확립

  • Siddikee, Md. Ashaduzzaman (Dept. of Agricultural Chemistry, Chungbuk National University) ;
  • Hamayun, Muhammad (Dept. of Botany, Abdul Wali Khan University) ;
  • Han, Gwang-Hyun (Dept. of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-min (Dept. of Agricultural Chemistry, Chungbuk National University)
  • ;
  • ;
  • 한광현 (충북대학교 농업생명환경대학 농화학과) ;
  • 사동민 (충북대학교 농업생명환경대학 농화학과)
  • Received : 2010.08.07
  • Accepted : 2010.08.13
  • Published : 2010.08.31

Abstract

Gibberellic acid ($CA_3$) is used in many industries and constitutes the primary gibberellins produced by fungi and bacteria. However, there is no information on $CA_3$ production by Methylobacterium oryzae CBMB20, a novel plant growth promoting bacterium. We investigated the favorable carbon (C) and nitrogen (N) sources and ratios and cultural conditions, such as incubation temperature, pH of the culture medium, and incubation period for the maximum production of $CA_3$ by Methylobacterium oryzae CBMB20. Maximum $CA_3$ production was observed in ammonium mineral salt (AMS) broth supplemented with Na-succinate and $NH_4Cl$ as C and N sources, respectively. The maximum $CA_3$ production was found at the C/N ratio of 5:0.4 g $L^{-1}$. The highest $CA_3$ production was obtained when the bacterial culture was incubated at $30^{\circ}C$ for 96 h at pH 7.

지베렐린산은 곰팡이 및 세균으로부터 생산되는 주요 식물생장촉진물질이며 다양한 산업에서 이용되고 있다. 본 연구는 Methylobacterium oryzae CBMB20을 이용하여 GA3를 생산하기 위해 탄소원 및 질소원을 선발하였으며, 선발된 탄소원 및 질소원의 최적 농도와 최적 비율을 조사하였다. 탄소원으로는 Na-succinate가 methanol, glucose, maltose, sucrose, fructose, lactose에 비해 가장 우수하였으며, 질소원으로는 $NH_4Cl$$NO_3$, $NaNO_3$, glycine 등에 비해 우수하였다. 배양액에서 Nasuccinate와 $NH_4Cl$를 각각 5 및 0.4 g $L^{-1}$ 농도 비율로 사용하였을 때 $CA_3$의 생산량이 가장 높았다. 또한 ammonium mineral salt 배지의 pH를 7로 유지하고 $30^{\circ}C$의 조건으로 96시간 배양하였을 때 $CA_3$의 생산이 최대로 나타나는 것을 확인하였다.

Keywords

References

  1. Bastian, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole-3-acetic acid and gibberellins $A_{1}$and $A_{3}$) by Acetobacter diazotrophicus and Herbaspirillum seropedice in chemically-defined culture media. Plant Growth Regul. 24:7-11. https://doi.org/10.1023/A:1005964031159
  2. Cho, K.Y., A. Sakurai, and Y. Kamiya. 1979. Effects of the new plant growth retardants of quaternary ammonium iodides on gibberellin biosynthesis in Gibberella fujikuroi. Plant Cell Physiol. 20:15-81.
  3. Demain. A.L. 1998. Induction of microbial secondary metabolism. Int. J. Microbiol. 1:259-264.
  4. Escamilla, E.M.S., L. Dendooven, I. P. Magana, R.S. Parra, and M. Dc la Torre. 2000. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J. Biotechnol. 76:147-155. https://doi.org/10.1016/S0168-1656(99)00182-0
  5. Giordano, W., J. Avalos, O.E. Cerda. and C. Domenech. 1999. Nitrogen availability and procuction of bikaverin and gibberellins in Gibberella fujikuroi. FEMS Lett. 173:389-393. https://doi.org/10.1111/j.1574-6968.1999.tb13530.x
  6. Green, P.N.and I.J. Bousifield. 1982. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:613-638.
  7. Hamayun, M., A.K. Sumera, M.A. Khan,A. L. Khan, S.M. Kang. S.K. Kim. G.J. Joo. and I. J. Lee. 2009. Gibberellin production by pure cultures of a new of Aspergillus funigatus. World J. Microbiol. Biotechnol. 25:1785-1792. https://doi.org/10.1007/s11274-009-0078-3
  8. Hollmann. D., J. Switalski, S. Geipel. and U. Onken. 1995. Extractive fermentation of gibberellic acid by Gibberella fujikuroi, J. Ferment. Bioeng. 79:594-600. https://doi.org/10.1016/0922-338X(95)94754-F
  9. Janzen. R., S. Rood. J. Dormar. and W. McGill. 1992. Azospirillum brasilense produces gibberelling in pure culture and chemically-medium and in co-culture on straw. Soil Biol. Biochem. 24:1061-1064. https://doi.org/10.1016/0038-0717(92)90036-W
  10. Joo, G.J., S.M. Kang. M. Humayun, S.K. Kim. C. I. Na, D.H. Shin, and I.J. Lee. 2009. Burkholderia sp. KCTC 11096BP as newly isolated gibberellin producing bacterium. J. Microbiol. 47:167-171. https://doi.org/10.1007/s12275-008-0273-1
  11. Jourand. P., E. Giraud, G. Bena. A. Sy. A. Willems. M. GilIis, B. Dreyfus. and P. de Lajudie. 2004. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int. J. Syst. Evol. Microbiol. 54:2269-2273. https://doi.org/10.1099/ijs.0.02902-0
  12. Kahlon, S.S. and S. Malhotra. 1986. Production of gibberellic acid by fungalmycelium immobilized in sodium alginate. Enzyme Microhe. Technol. 8:613-616. https://doi.org/10.1016/0141-0229(86)90121-3
  13. Kang, S.M., G.J. Joo, M. Hamayun, C.I. Na, D.H. Shin, H.Y. Kim. J. K. Hong. and I.J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett. 31:277-281. https://doi.org/10.1007/s10529-008-9867-2
  14. Kumar, P.K.R. and B.K. Lonsane. 1988. lmmovilized growing cells of Gibberella fujikuroi P-3 for production of gibberellic acid and pigment in batch and semi-continuous cultures. Appl. Microbiol. Biotechnol. 28:537-542.
  15. Madhaiyan, M., S. Poonguzhali. J.H. Ryu. and T.M. Sa. 2006a. Regulation of ethylene levels in canola (Brassica cumpestris) by 1-aminocyclopropane- 1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278. https://doi.org/10.1007/s00425-005-0211-y
  16. Madhaiyan. M., B.V.S. Reddy. R. Anandham. M. Senthilkumar, S. Poonguzhali, S.P. Sundaram, and T.M. Sa. 2006b. Plant growth promoting Methylobacterium sp. induces defense responses in groundnut (Arachis hypogaea L.) compared to rot pathogens. Curr. Microbiol. 53:270-276. https://doi.org/10.1007/s00284-005-0452-9
  17. Omer, Z.S., R. Tombolini, A.Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43:93-96. https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  18. Piccoli,P., O. Masciarelli, and R, Bottini. 1996. Metabolism of 17,17 [$^{2}H_{2}$]-Gibberellins $A_{4},\;A_{9}$, and $A_{20}$ by Azospirillum in chemically-defined culture medium. Symbiosis 21: 167-178.
  19. Poonguzhali, S., M. Madhaiyan, and T.M. Sa. 2007. Production of Acyl-Homoserine Lactone Quorum-sensingsignals is widespread in Gram-Negative Methylobacterium. J. Microbiol. Biotechnol. 17:226-233.
  20. Santos, M.G.E., M.C.M. Couto, and H.L.S. Rebelo. 2003. lon-selective electrodes based on metalloporphyrins for gibberellic acid determination in agricultural products. Anal. Bioanal. Chem. 375 :511-516. https://doi.org/10.1007/s00216-002-1717-9
  21. Shukla. R., A.K. Srivastava. and S. Chand. 2003. Bioprocess strategies and recovery processes in gibberellic acid fermentation. Biotechnol. Biproc. Eng. 8:269-278. https://doi.org/10.1007/BF02949216
  22. Sponsel. V.M. 2003. Gibberellins. p.29-40. In H.L. Henry and A.W. Norman (eds.) Encyclopedia of Hormones, Vol. 2. Academic Press, London, UK.
  23. Teichert. S., M. Wottawa, B. Schonig, and B. Tudzynski, 2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryotic Cell. 5:1807-819. https://doi.org/10.1128/EC.00039-06
  24. Timmusk. S., B. Nicander. U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852 https://doi.org/10.1016/S0038-0717(99)00113-3
  25. Zamanian. M. and R.J. Mason. 1987. Benzene dioxygenase in P. putida. Biochem. J. 244:611-616. https://doi.org/10.1042/bj2440611