벼.맥주보리 작부체계에서 돈분액비 연용이 맥주보리 생육과 토양 환경에 미치는 영향

Effect of Continual Application of Liquid Pig Manure on Malting Barley Growth and Soil Environment in Double Cropping System of Rice-Malting Barley

  • Lee, Seong-Tae (Gyeongsangnamdo Agricultural Research and Extension Services) ;
  • Seo, Dong-Cheol (Department of Oceanography and Coastal Science, School of the Coast and Environment, Louisiana State University) ;
  • Kim, Eun-Seok (Gyeongsangnamdo Agricultural Research and Extension Services) ;
  • Song, Won-Doo (Gyeongsangnamdo Agricultural Research and Extension Services) ;
  • Lee, Won-Gyu (Gyeongsangnamdo Provincial Government Building) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National Univ.) ;
  • Lee, Young-Han (Gyeongsangnamdo Agricultural Research and Extension Services)
  • 투고 : 2010.05.31
  • 심사 : 2010.06.14
  • 발행 : 2010.06.30

초록

본 시험은 남부지방의 대표적 이모작 작부체계인 벼 맥주보리 작부체계에서 3년 (6작기) 동안 화학비료와 돈분뇨의 시용량을 달리하여 연용하여 살포하였을 때 돈분뇨가 토양환경 및 맥주보리의 수량과 품질에 미치는 영향에 대하여 검토한 결과는 다음과 같다. 벼와 맥주보리 포장에 연용하여 돈분뇨를 100% 시용하였을 때 유효인산과 치환성 양이온 중에서 칼리의 함량이 증가하였다. 시험전 유효인산 함량은 243에서 3년후 350 mg $kg^{-1}$ 으로 100 mg $kg^{-1}$ 이상 증가하였고 치환성 칼륨은 0.31에서 0.44 $cmol_c\;kg^{-1}$ 으로 크게 증가하였다. 그러나 화학비료 50%+돈분뇨 50% 처리구에서는 유효인산과 치환성 칼리 함량의 변화가 크지 않았다. 유기물을 함유하고 있는 돈분뇨를 시용한 결과 토양의 가비중에는 영향을 미치지 않았다. 미생물의 밀도는 호기성 세균>방선균>사상균의 순이었다. 호기성 세균 개체수는 벼 (돈분뇨 100%)+맥주보리 (돈분뇨100%) 처리구에서 $26.3{\times}10^6\;CFU\;g^{-1}$으로 가장 많았다. 벼와 맥주보리 재배시 돈분뇨 100% 처리구에서 호기성 세균/사상균의 비율을 나타내는 B/F율이 1,011 으로 가장 높고 Biomass C 함량도 높아 이상적인 토양미생물상을 유지하고 있었다. 수량은 벼 (돈분뇨 100%)+맥주보리 (돈분뇨 100%) 처리구에서 간장, 수장, 수수 및 천립중이 높아 358 kg $10a^{-1}$ 으로 관행처리구 294 kg $10a^{-1}$ 대비 22 % 증수 되었다. ${\beta}$-glucan 함량은 돈분뇨 시용구 보다 비료 무시용구와 화학비료 100% 시용구에서 각각 4.5 및 4.4%로 가장 낮았다. 조단백 함량 또한 비료 무시용구와 화학비료 100% 시용구에서 8.2% 로 가장 낮았으며, 처리구 모두 조단백 함량 11% 이내로서 맥주보리 종실의 품질은 양호하였다.

To investigate the effect of continual pre-plant application of liquid pig manure (LPM) on malting barley growth, quality and soil environment in double cropping system of rice and malting barley, the liquid pig manure was applied after harvesting rice and malting barley for 3 years. Field experiment was designed with non-fertilizer, chemical fertilizer (CF) recommended by soil testing, rice (LPM 50%+CF 50%)+malting barley (CF 100%), rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%), rice (LPM 100%)+malting barley (CF 100%) and rice (LPM 100%)+malting barley (LPM 100%). By continuous application of LPM 100%, the contents of available $P_2O_5$ and exchangeable K in the soil were increased. The available $P_2O_5$ increased from 243 to 350 mg $kg^{-1}$ and exchangeable K was changed 0.31 to 0.44 $cmol_{c}\;kg^{-1}$. However, the contents of available $P_2O_5$ and exchangeable K were not significant changes in rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%) plot. Bulk density of soil was not affected by application of LPM. The microbial density was high in order of bacteria > actinomycetes > fungi. The population of aerobic bacteria in rice (LPM 100%)+malting barley (LPM 100%) plot was higher than other plots. The ratio of aerobic bacteria/fungi and biomass C content were the highest in rice (LPM 100%)+malting barley (LPM 100%) plot. The yield of malting barley was increased 22% by increasing culm length, panicle length, No. of panicle and 1,000 grains as 358 kg $10a^{-1}$ in rice (LPM 100%)+malting barley (LPM 100%) plot compared with 294 kg $10a^{-1}$ in rice (CF 100%)+malting barley (CF 100%) plot. The content of ${\beta}$-glucan was low by 4.5 and 4.4% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot, respectively. The content of crude protein was the lowest by 8.2% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot and the quality of malting barley was good as within 11%.

키워드

참고문헌

  1. Bamforth, C.W. 1985. Biochemical approaches to beer quality. J. Inst. Brew. 91:154. https://doi.org/10.1002/j.2050-0416.1985.tb04322.x
  2. Choudhary, M., L.D. Bailey, and C.A. Grant. 1996. Review of the use of swine manure in crop production : Effects on yield and composition on soil and water quality. Wasle Manage. Res. 14:581-591.
  3. Gilmour, J .T., A. Mauromouslakos, P.M. Gale, and R.J. Nonnan. 1998. Kinelics of crop residue decomposition : variabililty among crops and years. Soil Sci. Soc. Am. J 62:750-755. https://doi.org/10.2136/sssaj1998.03615995006200030030x
  4. Hwang, K.N., Y. H. Lee, Y.K. Shin, and G.S. Rhee. 1993, Study on behavior of rice straw in paddy soil. RDA. J. Agri. Sci. 35:289-294.
  5. Jeon, W.T., H.M. Park, C. Y . Park, K.D. Park, Y.S. Cho, E.S. Yun, and U,G. Kang, 2003. Effect of liquid pig manure application on rice growth and environmenl of paddy soil. Korean J. Soc. Soil Sci. Fert. 36:333-343.
  6. Kwon, Y.R., J. Kim, B.K. Ahn and S. B. Lee. 2010, Effect of liquid pig manure and synthentic fertilizer on rice growth, yield and quality. Korean J. Environ. Agric. 29:54-60. https://doi.org/10.5338/KJEA.2010.29.1.054
  7. Lee, G.K. and J.S. Kim. 1999. Treating swine waslewater by anaerobic bioreactors. Korean J. Environ. Agric. 18:54-60.
  8. Lee, J.T., Y,K. Nam, and J.I. Lee. 2001. Changes of physio-chemical properties and micronora of pig manure due to composting with some bulking agents. Korean J. Soc. Soil Sci. Fert. 34:134-144.
  9. Lee, S.B., J.G. Kim, K.B. Lee, D.B. Lee, and J.D. Kim. 2004. Decomposition of rice straw in paddy soil as affected by application of liquid pig manure. Korean J. Soc. Soil Sci. Fert. 37:104-108.
  10. Lee. Y.H .. Y.J. Choi. S.R. Park. S.T. Lee. B.G. Son, and G.M. Shon. 2001. Evaluation of soil microbial population of paddy fields in Gyeongnam province area. Korean J. Soc. Soil Sci. Fert. 34: 387-393.
  11. Lee. Y.T. 1996. Physicochemical characteristics and physiological function of $\beta$-glucans in barley and oats. Korean J. Crop Sci. 41 :10-24.
  12. Lim, T.J., I.B. Lee, S.B. Kang, J.M, Park, and S,D, Hong. 2009. Effect of continual pre-plant application of pig slurry on soil mineral nutrients and yield of chinese cabbage. Korean J. Environ. Agric. 28:227-232. https://doi.org/10.5338/KJEA.2009.28.3.227
  13. McCleary, B.V and H.M. Glennie. 1985, Enzymic quantification of (1-3)(1-4)-$\beta$-glucan in barley and malt. J. Inst. Brew. 91:285. https://doi.org/10.1002/j.2050-0416.1985.tb04345.x
  14. NIAST. 2000. Methods of soil and plant analysis, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea,
  15. Park, B,K., J.S. Lee, N.J. Cho, and K.Y. Jung, 2001. Effect of liquid pig manure on growth of rice and infiltration water quality. Korean J. Soc. Soil Sci. Fert, 34:153-157,
  16. RDA (Rural Development Administration). 1995. Standard methods for agricultural experiment. Rural Development Administration. Suwon, Korea.
  17. RDA (Rural Developmem Administration). 2002. Guidelines for applying liquid livestock manure. Rural Development Administration. Suwon, Korea.
  18. Son, Y.G., S.J. Suh, S.B. Baek, C.W. Lee, M.W. Park, and S.I. Han. 2002. Current status and prospect of quality evaluation in malting barley. Korean J. Crop Sci. 47:55-62.
  19. Sweeten, J,M. 1988. Composting manure sludge. p.38-44. In National poultry waste management symp., Columbus. OH. Dep. of Poultry Sci., Ohio State Univ., Columbus.
  20. Yadav, R.L., B.S. Dwivedi, K. Prasad, and P.S. Pandey. 2000. Yield trend and changes in soil organic-C and available NPK in a longterm rice-wheat system under integrated use of manure and fertilizers. Field Crop. Res. 68:219-246. https://doi.org/10.1016/S0378-4290(00)00126-X
  21. Yang, C.H., S.B. Lee, T.K. Kim, J.H. Ryu, C.H. Yoo, J.J. Lee, J.D. Kim, and K.Y. Jung. 2008. The effect of tillage methods after application of liquid pig manure on silage barley growth and soil environment in paddy soil. Korean J. Soc. Soil Sci. Fert. 41:285-291.