콩의 광질에 대한 엽 색소 및 엽록소 형광반응 연구

Response of Leaf Pigment and Chlorophyll Fluorescence to Light Quality in Soybean (Glycine max Merr. var Seoritae)

  • 박세준 (한경대학교 식물생태화학연구소) ;
  • 김도연 (한경대학교 식물생의약전공) ;
  • 유성녕 (한경대학교 식물생의약전공) ;
  • 김현희 (한경대학교 식물생태화학연구소) ;
  • 고태석 (한경대학교 식물생태화학연구소) ;
  • 심명룡 (한경대학교 식물생태화학연구소) ;
  • 박소현 (한경대학교 식물생의약전공) ;
  • 양지아 (한경대학교 식물생의약전공) ;
  • 엄기철 (세종데이터해석연구원) ;
  • 홍선희 (고려대학교 환경생태공학부) ;
  • 김태완 (한경대학교 식물생태화학연구소)
  • Park, Sei-Joon (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Kim, Do-Yun (School of Plant Life and Environmental Science, Department of Phytomedicine, Hankyong National University) ;
  • Yoo, Sung-Yung (School of Plant Life and Environmental Science, Department of Phytomedicine, Hankyong National University) ;
  • Kim, Hyun-Hee (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Ko, Tae-Seok (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Shim, Myong-Yong (Institute of Ecological Phytochemistry, Hankyong National University) ;
  • Park, So-Hyun (School of Plant Life and Environmental Science, Department of Phytomedicine, Hankyong National University) ;
  • Yang, Ji-A (School of Plant Life and Environmental Science, Department of Phytomedicine, Hankyong National University) ;
  • Eom, Ki-Cheol (Sejong Institute of Data Analysis (SEIDA)) ;
  • Hong, Sun-Hee (School of Ecological and Environmental Science, Korea University) ;
  • Kim, Tae-Wan (Institute of Ecological Phytochemistry, Hankyong National University)
  • 투고 : 2010.05.12
  • 심사 : 2010.06.12
  • 발행 : 2010.06.30

초록

서리태콩 (Glycine max Merr. var Seoritae)에서 광원에 따른 엽의 광합성 변화를 구명하기 위하여 콩의 제 1복엽이 완전 전개되었을 때 3일 동안 빛을 차단한 후 UV-B 와 일반광에 노출시켜 색소 함량과 엽록소 형광반응의 변화를 측정하였다. 암처리에서 엽록소 함량은 감소하고, 일반 광에서 회복하였다. 카로티노이드와 안토시아닌 함량은 UV-B 조사한 처리구에서 증가하였다. 엽록소 형광분석을 이용한 광합성 능률을 분석한 결과, 암처리가 진행 됨에 따라 Fv/Fm, F'v/F'm, ${\Phi}_{PSII}$ 및 NPQ는 감소하였다. 모든 변수들은 일반광에 노출되면서 회복하였으나 UV 처리한 것은 암처리 72시간의 수치와 큰 변화가 없었다. 이를 통하여 암처리 48시간 경과함으로 엽록체가 에티오플라스트로 전환되며, 일반광을 조사하였을 시 광합성 관련 광계가 복구되지만, UV-B의 강한 광이 조사되었을 때 광계가 회복되지 못하는 것으로 사료되었다.

Etiolation of plant leaves evoke to be photosynthetically inactive because plant leaves are unable to convert photochlorophyllide to chlorophyllide in the absence of light. In addition, UV-B radiation plays an important role in photomorphogenesis and excessive UV-B radiation decreases photosynthesis and causes to damage to cellular DNA. In the present study, two electrical lights obtained with the ultraviolet lamp and moderate lamp were employed to young plants soybean (Glycine max Merr. var Seoritae). After treatment of different lights, young plants were harvested for the determination of pigment contents and chlorophyll fluorescence. The contents of carotenoids and anthocyanins were significantly enhanced with the excessive UV-B radiation. Excessive UV-B light reduced dramatically photosynthetic efficiency causing an irreversible damage on PSII in comparison to the controls treated under normal illumination. As the treatment of normal illumination after dark treatment, the contents of carotenoids and anthocyanains were not changed in the leaves and photosynthetic ability were retained. Therefore, Seoritae soybean leaves might protect themselves from excessive UV-B radiation with up-regulation of antioxidants.

키워드

참고문헌

  1. AlIen, D.J., S. Nigues. J.l.L. Morison, P.D. Greenslade, A.R. Mcleod, and N.R. Baker. 1999. A thiny percent increase in UV-B has no impact on photosynthesis in well-walered and droughted pea plants in the field. Global Change BioI. 5:235-244. https://doi.org/10.1046/j.1365-2486.1999.00227.x
  2. Allen, D.J., S. Nigues, and N.R. Baker. 1998. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis. J. Exp. Bot. 49: 1175-1788.
  3. Anderson, J.M. and C.B. Osmond. 1987. Shade-sun responses: Compromises between acclimation and photoinhibition, in: Kyle, D.J., Osmond, C.B., Arntzen, C.J. Photoinhibition. Elsevier, Amsterdam. pp 15-44.
  4. Apel, K., H.J. SanteI, T.E. Redlinger, and H. Falk. 1980. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NAOPH: protochlorophyllide oxidoreductase. Eur. J. Biochem. 111:251-258.
  5. Armstrong, G.A., K. Apel, and W. Rudiger. 2000. Ooes a light-harvesting protochlorophyllide a/b binding protein complex exist? Trends Plant Sci. 5:40-44. https://doi.org/10.1016/S1360-1385(99)01513-7
  6. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant. Physiol. Plant. Mol. BioI. 50:601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  7. Baginsky S. and W. Gruissem. 2004. Chloroplast proteomics: Potentials and challenges. Experimental Bot. 55: 1213-1220. https://doi.org/10.1093/jxb/erh104
  8. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Botany, 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  9. Ballare, C.L., P.W. Barnes, and S.D. Flint. 1995. Inhibition of hypocotyJ elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Physiol. Plant 93:584-592. https://doi.org/10.1111/j.1399-3054.1995.tb05104.x
  10. Barter, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilityes. J. Exp. Bot. 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  11. Bjorkman, O. and B. Demmig-Adams. 1994. Regulation of photosynthetic light capture, conversion, and dissipation in higher plants, in: Schulze, E.-D., Caldwell (Eds.), M. M. Ecophysiology of Photosynthesis, Springer. Verlag, Berlin. pp.17-24.
  12. Bornman, J.F. 1989. Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem. Photobiol. B: BioI. 4: 145-158. https://doi.org/10.1016/1011-1344(89)80001-6
  13. Bray, C.M. and C.E. West. 2005. DNA repair mechanisms in plants; Crucial sensors and effectors for the maintenance of genome integrity. New Phytol. 168:511-528. https://doi.org/10.1111/j.1469-8137.2005.01548.x
  14. Burger, J. and G.E. Edwards. 1996. Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus geen leaf Coleus varieties. Plant Cell Physiol. 37:395.399. https://doi.org/10.1093/oxfordjournals.pcp.a028959
  15. Chow, W.C. 1994. Photoprotection and photoinhibitory damage, Adv. Molecular and Cell Biology 10:151-196. https://doi.org/10.1016/S1569-2558(08)60397-5
  16. Close, D.C. and C.L. Beadle. 2003. The ecophysiology of foliar anthocyanin. The Botanical Review 69: 149-161. https://doi.org/10.1663/0006-8101(2003)069[0149:TEOFA]2.0.CO;2
  17. Dakora, F.D. 1995. Plant flavonoids: Biological molecules for useful exploitation. Aust. J. Plant Physiol. 22:87-99. https://doi.org/10.1071/PP9950087
  18. Demmig-Adams, B. and W.W. Adams. 1996. The role of xantophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1:21-26. https://doi.org/10.1016/S1360-1385(96)80019-7
  19. Gitelson, A.A. and M.N. Merzlyak. 1994a. Quantitative estimation of chlorophyll.a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobioliology, B: Biology 22:247-252. https://doi.org/10.1016/1011-1344(93)06963-4
  20. Gitelson, A.A. and M.N. Merzlyak. 1994b. Spectral reflectance changes ssociate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiology 143:286-292. https://doi.org/10.1016/S0176-1617(11)81633-0
  21. Gonzalez, J A., M.G. Gallardo, C. Boero, M. Libennan Cruz, and F.E. Prado. 2007. Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world's highest elevation trees Polylepis taropocana (Rosaceae). Acta Oecologica. 32:36-41 . https://doi.org/10.1016/j.actao.2007.03.002
  22. Havaux, M. 1998. Carotenoids as stabilisers in chloroplasts. Trends Plant Sci. 3: 147-151. https://doi.org/10.1016/S1360-1385(98)01200-X
  23. Hendry, G.A.F. and A.H. Price. 1993. Stress indicators: chlorophylls and carotenoids. In: Hendry, G.A.F., Grime, J.P. (Eds.), Methods in Comparative Plant Ecology. Chapman & Hall, London, pp.148.152.
  24. Klaper, R., S. Frankel, and M.R. Berenbaum. 1996. Anthocyanin content and UV-B sensitivity in Brassica rapa. Photochemistry and Photobiology 63:811-813. https://doi.org/10.1111/j.1751-1097.1996.tb09635.x
  25. Lesser, M. P. and P.J. Neale. 1996. Acclimation of Antarctic phytoplankton to ultraviolet radiation: ultraviolet-absorbing compounds and carbon fixation. Mol. Mar BioI. Biotech. 5:314-325.
  26. Lichtenthaler, H.K., A. Ac, M.V. Marek., J. Kalina, and O. Urban. 2007. Differences in pigment composition. photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry 45:577-588. https://doi.org/10.1016/j.plaphy.2007.04.006
  27. Melis A., J.A. Nemson, and M.A. Hamson. 1992. Damage to functional components and panial degradation of photosystem II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. Biochim Biophys Acta 1100:312-320. https://doi.org/10.1016/0167-4838(92)90487-X
  28. Merzlyak M.N. and A.E. Solovchenko. 2002. Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Elsevier Plant Science 163:881-888. https://doi.org/10.1016/S0168-9452(02)00241-8
  29. Merzlyak, M.N. and A.A. Gitelson. 1995. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanaides L.). J. Plant Physiol. 145:315-320. https://doi.org/10.1016/S0176-1617(11)81896-1
  30. Merzlyak, M.N., O.B. Chivkunova, L. Lekhimena, and N.P. Belevich. 1996. Some limitations and potentailities of the spectrophotometric assay of pigments extracted from leaves of higher plants. Russ. J. Plant Physiol. 43:800-809.
  31. Mougel, J. L. and G. Tremblin. 2002. Suitability of the Fluorescence Monitoring System (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Bot. 74:219-231. https://doi.org/10.1016/S0304-3770(02)00104-3
  32. Oliver, R.P. and W.T. Griffiths. 1981. Covalent labelling of the NADPH: protochlorophyllide oxidoreductase from etioplast membranes with [$3^H$]N-phenylmaleimide. Biochem. 195: 93-101.
  33. Osmond, C. B. 1994. What is photoinhibition? Some insights from comparisons of shade and sun plants, in: Baker, N.R. Rowyer (Eds.), J.R. Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field, Bios Scientific, Oxford, pp. 1-24.
  34. Park. Y.L.. W.S. Chow, and J.M. Anderson. 1996. Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress, Plant Physiol. 111 :867-875.
  35. Ralph, P.J., C.M.O. Macinnis-Ng, and C. Frankan. 2005. Fluorescence imaging application; effect of leaf age on seagrass photokinetics. Aquatic Botany 81 :69-84. https://doi.org/10.1016/j.aquabot.2004.11.003
  36. Richardson, A.D. S.P. Duigan, and G.P. Berlyn. 2002. An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol. 153:185-194. https://doi.org/10.1046/j.0028-646X.2001.00289.x
  37. Rintamaki, E., R. Salo, E. Lehtonen, and E.M. Aro. 1995. Regulation of D1 protein-degradation during photoinhibition of photosystem-Il in-vivo-phosphorylation of D1 protein in various plant groups. Planta 195:319-386.
  38. Schepers, J.S., T.M. Blackmer, W.W. Wilhelm, and M. Resende. 1996. Transmittance and reflectance measurement of corn leaves from plants with different nitrogen and water supply. J. Plant Physiol. 148:523-529. https://doi.org/10.1016/S0176-1617(96)80071-X
  39. Scheumann V., H. Klement, M. Helfrich, U. Oster, S. Schoch, and W. Rudiger. 1999. Protochlorophyllide b does not occur in barley etioplasts. FEBS Letters. 445:445-448. https://doi.org/10.1016/S0014-5793(99)00169-6
  40. Schreiber, U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Pholosynth. Res. 10:51-62. https://doi.org/10.1007/BF00024185
  41. Sims D.A. and J.A. Gamon. 1999. Estimating chlorophyll, carotenoid and anthocyanin concentration using hyperspectral reflectance. Annual Meeting of the Ecological Society of America, Spokane, WA, USA. Lawrence, KS, USA: Allen Press.
  42. Steyn, W.J., S.J.E. Wand, D.M. Holcroft, and G. Jacobs. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155:349-361. https://doi.org/10.1046/j.1469-8137.2002.00482.x
  43. Strid, A. and R. J. Porra. 1992. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant Cell Physiol. 33:1015-1023.
  44. Strzalka, K., A. Kostecka-Gugala, and D. Latowski. 2003. Carotenoids and Environmental stress in plant; significance of carotenoid-mediated modulation of membrane physical properties. Russian Jounal of Plant Physiology 50: 168-173. https://doi.org/10.1023/A:1022960828050
  45. Tregub, I., S. Schoch, S. Erazo, and H. Scheer. 1996. Red-light-induced photoreactions of chlorophyll a mixtures with all-trans-or 9-cis-$\beta$-catotene, J. Photochem. Photobiol. B BioI. 98:51-58. https://doi.org/10.1016/1010-6030(96)04332-8
  46. Vacha, F., V. Sarafis, Z. Benediktyova, L. Sumba, J. Valenta, M. Vacha, Ch.-R. Sheue, and I. Nedbal. 2007. Identification of Photosystem I and Photosystem II enriched regions of thylakoid membrane by optical microimaging of cryo-fluorescence emission spectra and of variable fluorescence. Micron 38: 170-175. https://doi.org/10.1016/j.micron.2006.07.013
  47. Yannarelli, G.G., G.O. Noriega, A. Batte, and M.L. Tomaro. 2006. Heme Oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 244: 1154-1162.
  48. Young, A. and G. Britton. 1990. Carotenoids and stress, in Stress Responses in Plants: Adaptation and Acclimation Mechanisms (R. G. Aischer, and J. R. Cumming, Eds.), Wiley-Liss, New York, pp.87.1 12.
  49. Zulfugarov, I.S., O.K. Ham, S.R. Mishra, J.Y. Kim, K. Nath, H.Y. Koo, H.S. Kim, Y.H. Moon,G. An, and C.H. Lee. 2007. Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. Biochimica et Biophysica Acta 1767: 773-780. https://doi.org/10.1016/j.bbabio.2007.02.021