DOI QR코드

DOI QR Code

Major Characters of the Developed Sweet Sorghum Lines Induced by Mutagene, Gamma-ray

돌연변이원 감마선처리에 의해 유기된 단수수 유망 계통의 주요특성

  • Bok, Tae-Gyu (Dept. of Applied plant, Chungnam National University) ;
  • Lee, Moon-Sub (Dept. of Applied plant, Chungnam National University) ;
  • Shin, Won-Sik (Chungcheongnam-do Cheongyang Agricultural Technology Center) ;
  • Ryu, Ji-Hong (Chungcheongbuk-do Agricultural Research & Extension Services) ;
  • Lee, Hee-Bong (Dept. of Applied plant, Chungnam National University)
  • Received : 2010.10.05
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

This study was carried out to develop a new sweet sorghum for biomass by using mutagen, gamma-ray. Seeds treated were gained from National Genetic Resource Center, RDA, and these seeds were irradiated with gamma-ray (400Gy) at KAERI. CNUS-M113 and CNUS-M134 among 169 collected accessions were evaluated a promising line for biomass due to increasing of fresh and dry weight. In addition, this line was high in stem height, number of tiller and fresh weight per plant than check, Hwang-gum chal sorghum. Accordingly, this line demanded for leading variety the production test and cultivation adaptability in future years.

Keywords

References

  1. Carpita, N.C., M.C. McCann. 2008. Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci. 13: 415-420. https://doi.org/10.1016/j.tplants.2008.06.002
  2. Casa, A.M., G.Pressoir, P.J. Brown, S.E. Mitchel, W.L.Rooney, M.R. Tuinstra, C.D. Franks, S. Kresovich. 2008. Community resources and strategies for association mapping in sorghum. Crop Sci. 48: 30-40. https://doi.org/10.2135/cropsci2007.02.0080
  3. Dhugga, K.S. 2007. Maize biomass yield and composition for biofuels. Crop Sci. 47: 2211-2227. https://doi.org/10.2135/cropsci2007.05.0299
  4. Jenks, M.A., R.J. Joly, P.J. Peters, J.D. Axtell, E.N. Ashworth. 1994. Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.). Moench. Plant Physiol. 105: 1239-1245.
  5. Lee, H.B., T.G. Bok, M.S. Lee, W.S. Shin, H.J. Cha. 2010. Variation of character and breeding stratagy for sweet sorghum accessions. Korean Breed Society. Abstract 38 p.
  6. Poter, K.S., J.D. Anxtell, V.L. Lechtenberg, V.F. Colenbrander. 1978. Phenotype fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18: 205-208. https://doi.org/10.2135/cropsci1978.0011183X001800020002x
  7. Rooney, W.L. 2004. Sorghum improvement-integrating traditional and new technology to produce improved genotypes. Adv. Agron. 83: 37-109. https://doi.org/10.1016/S0065-2113(04)83002-5
  8. Sakamoto, T., Y. Morinaka, T. Ohnishi, H. Sunohara, S. Fujioka, M. Ueguchi-Tanaka, M. Mizutani, K. Sakata, S. Takatsuto, S. Yoshida, H. Tanaka, H. Kitano, M. Matsuoka. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24: 105-109. https://doi.org/10.1038/nbt1173
  9. Savallios, A., W. Vermerris, L. Rivera, G. Ejeta. 2008. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenerg. Res. 1: 193-204. https://doi.org/10.1007/s12155-008-9025-7
  10. Vermerris, W, A. Saballos, G. Ejeta, N.S. Mosier, M.R. Ladisch, N.C. Carpita. 2007. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47: S142-153.
  11. Yuan, J.S., K.H. Tiller, H. Al-Ahmad, N.R. Stewart, C.N. Jr. Stewart. 2008. Plants to power: bioenergy to fuel the future. Trends Plant Sci. 13: 421-429. https://doi.org/10.1016/j.tplants.2008.06.001