DOI QR코드

DOI QR Code

Identification of Inhibitory Effect on Streptococcus mutans by Oleanolic Acid

Oleanolic acid(OA)의 Streptococcus mutans에 대한 저해효과

  • Yoon, Yo-Han (Team for Radiation Food Science & Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
  • 윤요한 (한국원자력연구원 정읍 방사선과학연구소 식품생명공학연구실) ;
  • 최경희 (원광대학교 치과대학 구강미생물학교실)
  • Received : 2009.11.23
  • Accepted : 2010.02.18
  • Published : 2010.03.30

Abstract

Among endogenous oral microflora, Streptococcus mutans plays a critical role in dental plaque formation, which mainly contributes to the development of caries and periodontal disease. Phytochemicals are plant-derived chemical compounds that have been studied as beneficial nutrients to human health. The purpose of this study was to determine the effects of phytochemicals against S. mutans. Among them, oleanolic acid (OA) and 5-(hydroxymethyl)-2-furfural (HF) from Thomson seedless raisins were tested for anti-microbial effects against various clinically important bacteria. OA inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria. However, HF did not display any antibacterial effect against any of the strains tested. OA also exhibited inhibitory effects in surface adherence and biofilm formation of S. mutans. The results suggest that OA can be utilized as a potential anti-plaque and anti-caries agent by controlling the physiological characteristics of S. mutans on teeth.

구강에 상주하는 미생물 중, Streptococcus mutans는 충치 및 치주염의 원인인 치아플라그를 형성하는데 중요한 역할을 한다. Phytochemical은 식물에서 추출된 화학성분으로서, 사람의 건강에 유익한 영양물질로서 많은 연구들이 진행되어왔다. 본 연구는 이 phytochemical이 중요 구강미생물인 S. mutans에 대한 효과를 살펴보았다. 최근에 Thomson seedless raisin에서 여러 phytochemicals가 추출되었는데, 그 중 oleanolic acid (OA)와 5-(hydroxymethyl)-2-furfural (HF)의 임상적으로 중요한 여러 미생물에 대한 항균활성효과를 확인한 결과, OA가 그람음성균들에게는 항균활성효과가 나타나지 않았고, 그람양성균들에만 항균활성효과를 보였다. 그러나, HF의 경우에는 모든 균주에 대해 항균활성을 나타내지 않았다. 또한, OA는 S. mutans 균주의 표면부착과 생균막의 형성을 저해하기도 하였다. 따라서, 이 연구결과들은 OA가 치아에 존재하는 S. mutans의 생육 및 여러 생리적 특성들을 저해하므로 항플라그제나 항충치약으로서의 활용가능성을 확인할 수 있었다.

Keywords

References

  1. Aoki, H., T. Shiroza, M. Hayakawa, S. Sato, and H. K. Kuramitsu. 1986. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 3, 587-594.
  2. Aparecida Resende, F., C. A. de Andrade Barcala, M. C. da Silva Faria, F. H. Kato, W. R. Cunha, and D. C. Tavares. 2006. Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci. 79, 1268-1273. https://doi.org/10.1016/j.lfs.2006.03.038
  3. Banas, J. A. and M. M. Vickerman. 2003. Glucan-binding proteins of the oral streptococci. Crit. Rev. Oral Biol. Med. 14, 89-99. https://doi.org/10.1177/154411130301400203
  4. Biswas, S. and I. Biswas. 2006. Regulation of the glucosyltransferase (gtfBC) operon by CovR in Streptococcus mutans. J. Bacteriol. 188, 988-998. https://doi.org/10.1128/JB.188.3.988-998.2006
  5. Giner-Larza, E. M., S. Manez, M. C. Recio, R. M. Giner, J. M. Prieto, M. Cerda-Nicolas, and J. L. Rios. 2001. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharmacol. 428, 137-143. https://doi.org/10.1016/S0014-2999(01)01290-0
  6. Horiuchi, K., S. Shiota, T. Hatano, T. Yoshida, T. Kuroda, and T. Tsuchiya. 2007. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147-1149. https://doi.org/10.1248/bpb.30.1147
  7. Islam, B., S. N. Khan, I. Haque, M. Alam, M. Mushfiq, and A. U. Khan. 2008. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans bio-film by 1-deoxynojirimycin isolated from Morus alba. J. Antimicrob. Chemother. 62, 751-757. https://doi.org/10.1093/jac/dkn253
  8. Jimenez-Arellanes, A., M. Meckes, J. Torres, and J. Luna-Herrera. 2007. Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J. Ethnopharmacol. 111, 202-205. https://doi.org/10.1016/j.jep.2006.11.033
  9. Kashiwada, Y., H. K. Wang, T. Nagao, S. Kitanaka, I. Yasuda, T. Fujioka, T. Yamagishi, L. M. Cosentino, M. Kozuka, H. Okabe, Y. Ikeshiro, C. Q. Hu, E. Yeh, and K. H. Lee. 1998. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 61, 1090-1095. https://doi.org/10.1021/np9800710
  10. Kurek, A., A. M. Grudniak, M. Szwed, A. Klicka, L. Samluk, K. I. Wolska, W. Janiszowska, and M. Popowska. 2009. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek in press.
  11. Loo, C. Y., D. A. Corliss, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 1374-1382. https://doi.org/10.1128/JB.182.5.1374-1382.2000
  12. Mattos-Graner, R. O., M. H. Napimoga, K. Fukushima, M. J. Duncan, and D. J. Smith. 2004. Comparative analysis of Gtf isozyme production and diversity in isolates of Streptococcus mutans with different biofilm growth phenotypes. J. Clin. Microbiol. 42, 4586-4592. https://doi.org/10.1128/JCM.42.10.4586-4592.2004
  13. Merritt, J., F. Qi, S. D. Goodman, M. H. Anderson, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71, 1972-1979. https://doi.org/10.1128/IAI.71.4.1972-1979.2003
  14. Poros-Gluchowska, J. and Z. Markiewicz. 2003. Antimicrobial resistance of Listeria monocytogenes. Acta Microbiol. Pol. 52, 113-129.
  15. Rutter, P. R. and A. Abbott. 1978. A study of the interaction between oral Streptococci and hard surfaces. J. Gen. Microbiol. 105, 219-226. https://doi.org/10.1099/00221287-105-2-219
  16. Sanchez, M., C. Theoduloz, G. Schmeda-Hirschmann, I. Razmilic, T. Yanez, and J. A. Rodriguez. 2006. Gastroprotective and ulcer-healing activity of oleanolic acid derivatives: in vitro-in vivo relationships. Life Sci. 79, 1349-1356. https://doi.org/10.1016/j.lfs.2006.03.044
  17. Schilling, K., M. and W. H. Bowen. 1992. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60, 284-295.
  18. Sohn, K. H., H. Y. Lee, H. Y. Chung, H. S. Young, S. Y. Yi, and K. W. Kim. 1995. Anti-angiogenic activity of triterpene acids. Cancer Lett. 94, 213-218. https://doi.org/10.1016/0304-3835(95)03856-R
  19. Takeuchi, K., H. Tomita, S. Fujimoto, M. Kudo, H. Kuwano, and Y. Ike. 2005. Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol. Lett. 243, 347-354. https://doi.org/10.1016/j.femsle.2004.12.022
  20. van Loosdrecht, M. C. M., W. Norde, J. Lyklema, and A. J. B. Zehnder. 1990. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic Sciences 52, 103-114. https://doi.org/10.1007/BF00878244
  21. Vazquez-Boland, J. A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
  22. Yamanaka-Okada, A., E. Sato, T. Kouchi, R. Kimizuka, T. Kato, and K. Okuda. 2008. Inhibitory effect of cranberry polyphenol on cariogenic bacteria. Bull. Tokyo Dent. Coll. 49, 107-112. https://doi.org/10.2209/tdcpublication.49.107
  23. Yoshida, A., T. Ansai, T. Takehara, and H. K. Kuramitsu. 2005. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372-2380. https://doi.org/10.1128/AEM.71.5.2372-2380.2005
  24. Wen, Z. T. and R. A. Burne. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68, 1196-1203. https://doi.org/10.1128/AEM.68.3.1196-1203.2002
  25. Wu, C. D. 2009. Grape products and oral health. J. Nutr. 139, 1818S-1823S https://doi.org/10.3945/jn.109.107854

Cited by

  1. Antimicrobial Action of Oleanolic Acid on Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0118800