Enhancement of Immunostimulation by Fractionation of Active Polysaccharide from Fermented Ginseng with Phellinus linteus Mycelium in Solid Culture

면역활성 증진을 위한 수삼의 상황버섯 균사체 고체배양으로 조제된 수삼발효물로부터 활성 다당류 분획

  • Kim, Hoon (Department of Food Science and Technology, Chungju National University) ;
  • Yoon, Hyun-Seok (Department of Food Science and Technology, Chungju National University) ;
  • Jeong, Jae-Hyun (Department of Food Science and Technology, Chungju National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University) ;
  • Hwang, Jong-Hyun (Department of Food Science and Technology, Chungju National University) ;
  • Yu, Kwang-Won (Department of Food Science and Technology, Chungju National University)
  • Received : 2009.11.20
  • Accepted : 2010.01.15
  • Published : 2010.04.30

Abstract

Crude polysaccharide (WG-PL-CP) was fractionated from fermented ginseng with Phellinus linteus in solid culture to enhance the immunostimulation of ginseng. WG-PL-CP produce three active polysaccharide-rich fractions (WG-PL-CP-II, III, and IV) on DEAE-Sepharose CL-6B ($Cl^-$ form). WG-PL-CP-III displayed higher mitogenic activity (1.98-fold of the saline control at $100\;{\mu}g/mL$) than did WG-CP-III or PL-CP-III (1.60- or 1.65-fold, respectively), and potent intestinal immune system modulating activity through Peyer's patch was obtained by WG-PL-CP-IV only (1.56-fold). Meanwhile, WG-PL-CP-II and III significantly enhanced macrophage stimulating activity (2.01- and 1.94-fold) compared to WG-CP-II and III (1.73- and 1.66-fold) or PL-CP-II and III (1.79- and 1.72-fold). In addition, WG-PL-CP-III and IV mainly contained neutral sugar (73.5 and 67.3%) and uronic acid (23.2 and 24.6%). Component sugar analysis also showed that WG-PL-CP-III consisted mainly of uronic acid as well as the neutral sugars Glc, Ara, Gal, Rha and Xyl (molar ratio of 0.81:1.00:0.49:0.42:0.28:0.20), whereas WG-PL-CP-IV was mainly comprised of uronic acid, Ara, Rha, Gal, Xyl and Glc (1.00:0.75:0.69:0.63:0.42:0.34). Therefore, it is assumed that these active polysaccharides play an important role in enhancing the immunostimulation of fermented ginseng with P. linteus in solid culture.

면역활성을 증진시키기 위하여 수삼의 상황버섯 균사체 고체 배양을 통하여 발효물을 조제하고 조다당획분(WG-PL-CP)을 분획한 후 DEAE-Sepharose CL-6B column chromatography를 이용하여 3개의 활성 다당획분(WG-PL-CP-II, III와 IV)을 분리하였다. WG-PL-CP-III($100\;{\mu}g/mL$ 농도, saline 대조군의 1.98배)는 시료대조군인 WG-CP-III 또는 PL-CP-III(1.60배 또는 1.65배)보다 효과적인 마크로파지 활성을 나타내었고, Peyer's patch를 경유한 장관면역 활성은 WG-PL-CP-IV(1.56배)에서 관찰되었다. 한편, WG-PL-CP-II와 III(2.01배와 1.94배)는 시료대조군인 WG-CP-II와 III(1.73배와 1.66배) 또는 PL-CP-II와 III(1.79배와 1.72배)의 동일획분과 비교하여 유의적으로 증가된 마크로파지 활성을 나타내었다. 이러한 활성 획분 중 다양한 활성을 갖는 다당획분인 WG-PL-III와 IV는 주로 중성당(73.5%와 67.3%)과 산성당(23.2%와 24.6%)을 포함하는 다당류임을 알 수 있었다. 또한 구성당 분석결과, WG-PL-CP-III는 주로 산성당과 Glc, Ara, Gal, Rha와 Xyl의 구성당이 0.81:1.00:0.49:0.42:0.28:0.20의 molar ratio을 보이고 있는 반면, WG-PL-CP-IV는 산성당과 Ara, Rha, Gal, Xyl와 Glc가 1.00:0.75:0.69:0.63:0.42:0.34의 비율로 구성되었음을 나타내었다. 따라서 이러한 활성 다당획분이 수삼의 상황버섯 균사체 고체배양 발효물의 면역활성 증진에 중요하게 관여하고 있는 것으로 생각된다.

Keywords

References

  1. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C.A. Meyer. Acta Pharmacol. Sin. 29: 1109-1118 (2008) https://doi.org/10.1111/j.1745-7254.2008.00869.x
  2. Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550: 173-179 (2006) https://doi.org/10.1016/j.ejphar.2006.08.056
  3. Kim JH, Cho SY, Kang CW, Yoon IS, Lee JH, Jeong SM, Lee BH, Lee JH, Pyo MK, Choi SH, Quan SF, Lee JH, Choi CB, Rhim H, Nah SY. Ginseng saponins diminish adverse vascular effects associated with chronic methionine-induced hyperhomocysteinmia. Biol. Pharm. Bull. 29: 2425-2431 (2006) https://doi.org/10.1248/bpb.29.2425
  4. Kim JY, Lee KW, Kim SH, Wee JJ, Kim YS, Lee HJ. Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol. Planta Med. 68: 119-122 (2002) https://doi.org/10.1055/s-2002-20240
  5. Lim TS, Na K, Choi EM, Chung JY, Hwang JK. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J. Med. Food 7: 1-6 (2004) https://doi.org/10.1089/109662004322984626
  6. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharm. Immunot. 24: 469-482 (2002) https://doi.org/10.1081/IPH-120014730
  7. Kim HJ, Kim MH, Byon YY, Park JW, Jee Y, Joo HG. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J. Vet. Sci. 8: 39-44 (2007) https://doi.org/10.4142/jvs.2007.8.1.39
  8. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 17: 323-331 (1997)
  9. Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunopharmacol. 2: 857-865 (2002) https://doi.org/10.1016/S1567-5769(01)00211-9
  10. Lim YJ, Na HS, Yun YS, Choi IS, Oh JS, Rhee JH, Cho BH, Lee HC. Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model. Int. Arch. Allergy Imm. 150: 32-42 (2009) https://doi.org/10.1159/000210378
  11. Kim YC, Cho CW, Rhee YK, Yoo KM, Rho J. Antioxidant activity of ginseng extracts prepared by enzyme and heat treatment. J. Korean Soc. Food Sci. Nutr. 36: 1482-1485 (2007) https://doi.org/10.3746/jkfn.2007.36.11.1482
  12. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. Changes of Korean ginseng components with high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 521-525 (2006)
  13. Lee JW, Bang KW. Biological activity of Phellinus spp. Food Ind. Nutr. 6: 25-33 (2001)
  14. Chang ZQ, Oh BC, Lee SP, Rhee MH, Park SC. Comparative immunomodulating activities of polysaccharide isolated from Phellinus spp. on cell-mediated immunity. Phytother. Res. 22: 1396-1399 (2008) https://doi.org/10.1002/ptr.2516
  15. Zhu T, Kim SH, Chen CY. A medicinal mushroom: Phellinus linteus. Curr. Med. Chem. 15: 1330-1335 (2008) https://doi.org/10.2174/092986708784534929
  16. Han SB, Lee CW, Kang JS, Yoon YD, Lee KH, Lee K, Park SK, Kim HM. Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int. Immunopharmacol. 6: 697-702 (2006) https://doi.org/10.1016/j.intimp.2005.10.003
  17. Jeon TI, Hwang SG, Lim BO, Park DK. Extracts of Phellinus linteus grown on germinated brown rice suppress liver damage induced by carbon tetrachloride in rats. Biotechnol. Lett. 25: 2093-2096 (2003)
  18. Kim BC, Choi JW, Hong HY, Lee SA, Hong S, Park EH, Kim SJ, Lim CJ. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophage. J. Ethnopharmacol. 106: 364-371 (2006) https://doi.org/10.1016/j.jep.2006.01.009
  19. Jung JY, Lee IK, Seok SJ, Lee HJ, Kim YH, Yun BS. Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J. Appl. Microbiol. 104: 1824-1832 (2008) https://doi.org/10.1111/j.1365-2672.2008.03737.x
  20. Lemberkovics E, Czinner E, Szentmihalyi K, Balazs A, Szoke E. Comparative evaluation of Helichrysi flos herbal extracts as dietary sources of plant polyphenols, and macro- and microelements. Food Chem. 78: 119-127 (2002) https://doi.org/10.1016/S0308-8146(02)00204-2
  21. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotech. 126: 35-48 (2005) https://doi.org/10.1007/s12010-005-0004-6
  22. Dubois M, Gilles KA, Hamiltonm JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  23. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  25. Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  26. Zhao JF, Kiyohara H, Yamada H, Takemoto N, Kawamura H. Heterogeneity and characterization of mitogenic and anti-complementary pectic polysaccharides from the roots of Glycyrrhiza uralensis Fisch et D.C. Carbohyd. Res. 219: 149-172 (1991) https://doi.org/10.1016/0008-6215(91)89049-L
  27. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol. Pharm. Bull. 19: 1518-1520 (1996) https://doi.org/10.1248/bpb.19.1518
  28. Yu KW, Kiyohara H, Matsumoto T, Yang HC, Yamada H. Intestinal immune system modulating polysaccharides from rhizomes of Atractylodes lancea. Planta Med. 64: 714-719 (1998) https://doi.org/10.1055/s-2006-957564
  29. Conrad RE. Induction and collection of peritoneal exudates macrophages. pp. 5-11. In: Manual of Macrophage Methodology. Herscowitz BH, Holden HT, Bellanti JA, Ghaffar A (eds). Marcel Dekker Incorporation, New York, NY, USA (1981)
  30. Suzuki I, Tanaka H, Konoshita A, Oikawa S, Osawa M, Yadomae T. Effect of orally administered $\beta$-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675-684 (1990) https://doi.org/10.1016/0192-0561(90)90105-V
  31. Han J. Solid-state fermentation of cornmeal with the basidiomycete Hericium erinaceum for degrading starch and upgrading nutritional value. Int. J. Food Microbiol. 80: 61-66 (2003) https://doi.org/10.1016/S0168-1605(02)00122-8
  32. Schols HA, Voragen AGJ. Complex pectins: Structure elucidation using enzymes. pp. 3-19. In: Pectins and Pectinases. Visser J, Voragen AGJ (eds). Elsevier Science, Amsterdam, Netherlands (1996)
  33. Ridley BL, O'Neill MA, Mohnen D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967 (2001) https://doi.org/10.1016/S0031-9422(01)00113-3
  34. McNeil M, Darvill AG, Albersheim P. Structure of plant cell walls. X. Rhamnogalacturonan I, a structurally complex pectin polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol. 66: 1128-1134 (1980) https://doi.org/10.1104/pp.66.6.1128
  35. Yu KW, Kiyohara H, Matsumoto T, Yang HC, Yamada H. Characterization of pectic polysaccharides having intestinal immune system modulating activity rhizomes of Atractylodes lancea DC. Carbohyd. Polym. 46: 125-134 (2001) https://doi.org/10.1016/S0144-8617(00)00292-7
  36. Zhang X, Yu Li, Bi H, Li X, Ni W, Han H, Li N, Wang B, Zhou Y, Tai G. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A. Meyer. Carbohyd. Polym. 77: 544-552 (2009) https://doi.org/10.1016/j.carbpol.2009.01.034
  37. Liu Y, Wang F. Structural characterization of an active polysaccharide from Phellinus ribis. Carbohyd. Polym. 70: 386-392 (2007) https://doi.org/10.1016/j.carbpol.2007.04.019
  38. Baker JR, Kim JS, Park SY. Composition and proposed structure of a water-soluble glycan from the Keumsa Sangwhang mushroom (Phellinus linteus). Fitoterapia 79: 345-350 (2008) https://doi.org/10.1016/j.fitote.2008.03.002
  39. Koo HJ, Park SH, Jo JS, Kim BY, Baik MY. Gelatinization and retrogradation of 6-year-old Korean ginseng starches studied by DSC. LWT-Food Sci. Technol. 38: 59-65 (2005) https://doi.org/10.1016/j.lwt.2004.05.003