Changes in the Chemical Stability and Antioxidant Activities of Curcuminoids under Various Processing Conditions

다양한 가공 조건에서 curcuminoid의 화학안정성 및 항산화능 변화

  • Lee, Bo-Hyun (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Kim, Da-Ram (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Kang, S-Mee (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Kim, Mi-Ri (Division of Food Science, College of Natural Science, Seoul Women's University) ;
  • Hong, Jung-Il (Division of Food Science, College of Natural Science, Seoul Women's University)
  • 이보현 (서울여자대학교 자연과학대학 식품과학부) ;
  • 김다람 (서울여자대학교 자연과학대학 식품과학부) ;
  • 강스미 (서울여자대학교 자연과학대학 식품과학부) ;
  • 김미리 (서울여자대학교 자연과학대학 식품과학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품과학부)
  • Received : 2009.09.09
  • Accepted : 2009.10.09
  • Published : 2010.02.28

Abstract

Curcuminoids are polyphenolic compounds and include curcumin and its derivatives possessing a yellow color. In the present study, changes in the chemical stability and antioxidant activities of curcuminoids, including curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), were investigated under various processing conditions. The yellowness of a mixture of the curcuminoids (79.4% curcumin, 16.8% DMC, and 3.8% BMC) at 405 nm was proportional to their amounts analyzed by HPLC. The curcuminoids became less stable with increases of pH and temperature during storage. Exposing a solution of the curcuminoids to autoclave conditions ($121^{\circ}C$, 1.2 atm for 15 min) decreased residual curcuminoid levels by 80-90%; however, as a powder under the same conditions the curcuminoids were much more stable with less than 10% loss. After autoclave treatment, scavenging activities of the curcuminoids for DPPH and ABTS radicals were reduced by 10.3 and 33.4%, respectively, whereas nitric oxide scavenging activity was slightly increased. The residual levels of curcumin, DMC, and BMC after autoclaving were 0.7, 1.4, and 0.9%, respectively, indicating that curcumin was the most sensitive to autoclave treatment. The results indicate that under processing conditions, pH and temperature markedly affect the stability of curcuminoids and major losses of curcuminoids occur after autoclaving. These conditions should be considered when processing foods containing curcuminoids.

생리활성 물질로 알려진 curcuminoid의 다양한 가공조건에서의 화학안정성 및 항산화능의 변화를 조사하였다. Curcuminoid의 화학안정성은 pH와 온도에 의해 크게 영향 받았으며, 온도 및 pH의 증가는 curcuminoid의 황색도 및 화학안정성을 감소시켰다. 특히 일반적인 멸균조건($121^{\circ}C$, 1.2기압)에서 액상의 curcuminoid를 고압가열처리 하였을 경우 80-90%의 황색도 감소 및 구조적 파괴를 초래하였다. 하지만 분말상태 curcuminoid 시료의 고압가열처리 시는 10% 미만의 감소가 있었다. 고압가열처리 후 curcumonoids의 DPPH 및 ABTS 라디칼 소거능은 각각 10.3 및 33.4%의 활성 감소를 보였으며, nitric oxide 소거능은 약간 증가하였다. 고압가열처리 후 각 curcuminoid의 잔류량의 분석 결과, curcumin이 99% 이상 감소하여 고압가열처리에 가장 민감한 것으로 나타났고 BMC는 16.5% 잔류하였다. 본 연구는 생리활성 증강의 목적으로 식품 중에 첨가된 curcuminoid가 다양한 가공, 조리 과정을 통해 화학적 변화 및 활성의 변화를 가져올 수 있음을 보여주며, 이와 같은 생리활성 물질의 안정화를 위한 적절한 가공, 조리 방법들이 신중하게 고려되어야 함을 제시하고 있다.

Keywords

References

  1. Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur. J. Cancer 41: 1955-1968 (2005) https://doi.org/10.1016/j.ejca.2005.05.009
  2. Kim KS, Choung MG, Park SH. Quantitives determination and stability of curcuminoid pigments from tumeric (Curcuma longa L.) root. Korean J. Crop Sci. 50: 211-215 (2005)
  3. Fujisawa S, Atsumi T, Ishihara M, Kadoma Y. Cytotoxicity, ROS-generation activity and radical scavenging activity of curcumin and related compuonds. Anticancer Res. 24: 563-569 (2004)
  4. Kunchandy E, Rao MN. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. Sci. 48: 237-240 (1990)
  5. Reddy AC, Lokesh BR. Studies on anti-inflammatory activity of spice principle and dietary n-3 polyunsaturated fatty acids on carrageenan-induced inflammation in rats. Ann. Nutr. Metab. 38: 349-358 (1994) https://doi.org/10.1159/000177833
  6. Ahsan HS, Parveen NZ, Khan NU, Hadi SM. Pro-oxidant, antioxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem.-Biol. Interact. 121: 161-175 (1999) https://doi.org/10.1016/S0009-2797(99)00096-4
  7. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, Lee MJ, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related $\beta$-diketone derivatives: Effects on cytosolic phospholipase $A_{2}$, cyclooxygenase and 5-lipoxygenase. Carcinogenesis 16: 1671-1679 (2004)
  8. Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. 67: 1988- 1996 (2007) https://doi.org/10.1158/0008-5472.CAN-06-3066
  9. Chen H, Zhang ZS, Zhang YL, Zhou DY. Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res. 19: 3675-3680 (1999)
  10. Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett. 255: 170-181 (2007) https://doi.org/10.1016/j.canlet.2007.03.005
  11. Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anti-Cancer Drugs 8: 470-481 (1997) https://doi.org/10.1097/00001813-199706000-00010
  12. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21: 8370-8377 (2001)
  13. Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for alzheimer's $\beta$-amyloid fibrils in vitro. J. Nuerosci. Res. 75: 742-750 (2004) https://doi.org/10.1002/jnr.20025
  14. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid $\beta$ oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280: 5892-5901 (2005)
  15. Ferrari CK. Functional foods, herbs, and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology 5: 275-289 (2004) https://doi.org/10.1007/s10522-004-2566-z
  16. Koo BY, Park SJ, Byeon YR, Son SH. Heat penetration characteristics and keeping quality of retort pouched curry. Korean J. Food Sci. Technol. 25: 63-68 (1993)
  17. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 27: 486-494 (1998)
  18. Blios MS. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1203 (1958)
  19. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  20. Jayaprakasha GK, Rao LJM, Sakariah KK. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agr. Food Chem. 50: 3668-3672 (2002) https://doi.org/10.1021/jf025506a
  21. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharmaceut. Biomed. 15: 1867-1876 (1997) https://doi.org/10.1016/S0731-7085(96)02024-9
  22. Prathapan A, Lukhman M, Arumughan C, Sundaresan A, Raghu KG. Effect of heat treatment on curcuminoid, colour value, and tatal polyphenols of fresh tumetic rhizome. Int. J. Food Sci. Tech. 44: 1438-1444 (2009) https://doi.org/10.1111/j.1365-2621.2009.01976.x