Characterization of Arsenic Immobilization in the Myungbong Mine Tailing

명봉광산의 광미 내 비소의 고정화 특성 연구

  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Jong-Ok (Central Instrument Facility, Gyeongsang National University) ;
  • Kim, Ju-Yong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 정종옥 (경상대학교 공동실험실습관) ;
  • 김주용 (광주과학기술원 환경공학과) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2010.03.22
  • Accepted : 2010.04.20
  • Published : 2010.04.28

Abstract

The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.

백악기 불국사화강암 내 열극을 충진한 함금은석영맥으로 구성된 명보광산은 전남 보성군에 위치한 광산이다. 본 연구에서는 명봉광산의 광미를 채취하여 광미 내 황화광물 풍화와 이차 삼차 광물 생성 또는 변질 등의 다양한 과정들이 비소의 고정화에 어떠한 영향을 미치는지 살펴보았다. 광물학적 화학적 방법으로 나누어 연구를 수행하였으며, 광물학적 방법으로는 비중/자력 선별, 초음파 서}척, 기기분석(X-선 회절 분석기, 에너지 분산분광기, 전자탐침미세현미경) 등이 이용되었다. 그리고 왕수분해법을 적용하여 광미 내 원소함량을 알아보았다. 연구결과, 광미의 풍화로 형성된 철 (산)수산화물은 충진, 침전, 변질 등의 3가지 형태로 존재하는 것으로 확인되었다. 즉, 황철석의 가장자리와 균열부를 충진하는 형태, 맥석광물을 피복하여 침전된 형태 그리고 유코나이트로 변질된 형태 등이었다. 초기 다량의 산-발생 광물인 황철석과 유비철석의 풍화로 인해 산화반응이 빠르게 일어나면서 많은 철 (산)수산화물과 스코로다이트 등이 이차적으로 생성되는 것이 인지되었다. 이와 더불어 산화 환경에 대한 노출기간이 길어지고 산-발생 광물이 소모되면서 광미 내 pH 감소속도는 점차적으로 줄어들게 될 뿐만 아니라 주변 모암 내 함유된 방해석과의 중화반응이 더 크게 기여함으로써 광미의 pH는 증가한 것으로 생각된다. 이러한 광미 내 pH의 상승으로 인하여 이차적으로 생성된 스코로다이트의 안정도가 감소하면서 비소가 재용출 되어진다. 또한 방해석과 스코로다이트로부터 용출된 칼슘이온과 비소이온이 국부적으로 농집되면서 삼차적으로 유코나이트로 성장하게 되고, 이러한 비산염광물의 일종인 유코나이트는 비소의 함량이 높은 광물로서 비소를 고정화시키는데 크게 기여한 것으로 판단된다. 뿐만 아니라 광미의 주요한 일차광물인 황철석이 풍화되면서 생성된 다량의 철 (산)수산화물은 비소의 거동에 대하여 제어능력이 큰 것으로 인지되었다. 결론적으로 본 연구는 이러한 일련의 과정에 통하여 일차적으로 용출되거나 이차적으로 재용출된 비소는 흡착, 공침, 흡수 등과 같은 다양한 수착 반응들로 인해 고정화됨을 확인하였다.

Keywords

References

  1. Ahn J.S., Kim J.Y., Chun C.M. and Moon H.S. (2003) Mineralogical and chemical characterization of arsenic solid phases in weathered mine tailings and their leaching potential. Econ. Environ. Geol., v.36, p.27-38.
  2. Bluteau, M.C. and Demopoulos, G.P. (2007) The incongruent dissolution of scorodite-solubility, kinetics and mechanism. Hydrometallurgy, v.87, p.163-177. https://doi.org/10.1016/j.hydromet.2007.03.003
  3. Carlson, L., Bighham, J.M., Schwertmann, U., Kyek, A. and Wagner, F. (2002) Scavenging of As from acid mine drainage by Schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ. Sci. Technol., v.36, p.1712-1719. https://doi.org/10.1021/es0110271
  4. Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol., v.37, p.4182-4189. https://doi.org/10.1021/es030309t
  5. Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, $FeAsO_4.2H_2O$. American Mineralogist, v.70, p.838-844.
  6. Harvey, M.C., Schreiber, M.E., Rimstidt, J.D. and Griffith, M.M. (2006) Scorodite dissolution kinetics: Implications for arsenic release. Environ. Sci. Technol., v.40, p.6709-6714. https://doi.org/10.1021/es061399f
  7. Jambor, J.L (1994) Mineralogy og sulfide-rich tailings and their oxidation products. In: Blowes, D.W, and Jambor, J.L. (eds.), Environmental geochemistry of Sulfide mine-wastes 22. Mineralogical Association of Canada short course, p.59-102.
  8. Jang H.Y., Chon H.T. and Lee J.U (2009) In-situ precipitation of arsenic and copper in soil by microbiological sulfate reduction. Econ. Environ. Geol., v.42, p.445-455.
  9. Juillot, F., Ildefonse, P.H., Morin, G., Calas, G., Kersabie, A. M. and Benedetti, M. (1999) Remobilization of arsenic from buried wastes at an industrial site: Mineralogical and geochemical control. Applied Geochemistry, v.14, p.1031–1048.
  10. Jung M.C., Jung M.Y. and Choi Y.W. (2004) Environmental assessment of heavy metals around abandoned metalliferous mine in korea. Econ. Environ. Geol., v.37, p.21-33.
  11. Kim H.J., Kim Y.K. and Choo C.O. (2009a) Mineralogy and the behavior of heavy metals at different depths in tailing impoundment of the samsanjeil mine. J. Miner. Soc. Korea, v.22, p.229-240.
  12. Kim S.O., Lee W.C., Jeong H.S. and Cho H.G. (2009b) Adsorption of arsenic on goethite. J. Miner. Soc. Korea, v.22, p.177-189.
  13. Ko I.W., Lee S.W., Kim J.Y., Kim K.W., Lee J.S., Chon H.T. and Jung M.C. (2003) Pontential impact of arsenic and heavy metals in the vincinity of the closed Au-Ag mining areas and its remediation priority, Korea. Soc. Geosys. Eng., v.40, p.367-378.
  14. Kruse, E. and Ettel, V.A. (1988) Solubility and stability of scorodite, $FeAsO_4.2H_2O$: new data and further discussion. American Mineralogist, v.73, p.850-854.
  15. Lee W.C., Jeong H.S., Kim J.Y. and Kim S.O. (2009) Study on adsorption features of arsenic onto lepidocrocite. Econ. Environ. Geol., v.42, p.95-105.
  16. Lee, K.Y., Kim, K.W., and Kim, S.O. (2010) Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environ. Geochem. Health, v.32, p.31-44. https://doi.org/10.1007/s10653-009-9263-4
  17. Mascaro, I., Benvenuti, B., Corsini, F., Costagliola, P., Lattanzi, P., Parrini, P. and Tanelli, G. (2001) Mine wastes at the polymetallic deposit of Fenice Capanne (southern Tuscany, Italy). Mineralogy, geochemistry, and environmental impact, Environ. Geology, v.41, p.417-429. https://doi.org/10.1007/s002540100408
  18. Marie-Claude B., Levente B. and George P.D. (2009) The dissolution of scorodite in gypsum-saturated waters: Evidence of $Ca-Fe-AsO_4$ mineral formation and its impact on arsenic retention. Hydrometallurgy. v.97, p.221-227. https://doi.org/10.1016/j.hydromet.2009.03.009
  19. Min J.S., Cheong Y.W., Lee H.J. and Lee D.N. (1997) A study on the environmental and safety problems and their remediation around mining areas. KIGAM Research Report, KR-97(C)-32, Korea Institute of Geology, Mining and Materials, Taejon. 11.
  20. Mineral Database (2010) http://www.webmineral.com
  21. Morin, K.A. and Hutt, N.M. (1997) Environmental geochemistry of mine site drainage practical theory and case studies; Description and assesment of drainage chemistry. MDAG Publishing, p.63-138.
  22. Nesbitt, H.W., Muir, I.J. and Pratt, A.R. (1995) Oxidation of arsenopyrite by air, air-saturated, distilled water, implications for mechanism of oxidation. Geochimica et Cosmochimica Acta, v.59, p.1773-1786. https://doi.org/10.1016/0016-7037(95)00081-A
  23. Korea Mining Promotion Corporation (1971) Ore deposit of Korea, v.12, p.90-91.
  24. Park Y.H. and Seo K.W. (2006) Policy suggestions for soil contamination prevention and management of inactive or abandoned metal mines. Korea. Environ. Ins., v.11, p.1-11.
  25. Peter D. and Michal F. (2009) Secondary arsenic minerals in the environment: A review. Korea. Environ. Inter., v.35, p.1243-1255. https://doi.org/10.1016/j.envint.2009.07.004
  26. Pokrovski, G.S., Kara, S. and Roux, J. (2002) Stability and Solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, v.66, p.2361-2378. https://doi.org/10.1016/S0016-7037(02)00836-0
  27. Ribet, I., Ptacek, C.J., Blowes, D.W. and Jambor, J.L. (1995). The potential for metal release by reductive dissolution of weathered mine tailings. J. of Contaminant Hydrology, v.17, p.239–273.
  28. Sam R. and Isablle K.B. (1999) Magnetic susceptibilities of minerals. U.S. Geological Survey, p.99-529.
  29. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., v.17, p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  30. Sun, X. and Doner, H. (1998) Adsorption and oxidation of arsenite on goethite. Soil Science, v.163, p.278-287. https://doi.org/10.1097/00010694-199804000-00003
  31. Ure, A.M. (1995) Method of analysis for heavy metals in soils. In: Alloway, B. J.(eds.), Heavy metal in soils. Chapman and Hall, Glasgow, p.55-68.