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Principal Component Analysis of BGP Update Streams

Kuai Xu, Jaideep Chandrashekar, and Zhi-Li Zhang

Abstract: In this paper, we propose a novel methodology to iden-
tify border gateway protocol (BGP) updates associated with major
events—affecting network reachability to multiple ASes—and sep-
arate them (statistically) from those attributable to minor events,
which individually generate few updates, but collectively form the
persistent background noise observed at BGP vantage points. Our
methodology is based on principal component analysis, which en-
ables us to transform and reduce the BGP updates into different
AS clusters that are likely affected by distinct major events. We
demonstrate the accuracy and effectiveness of our methodology
through simulations and real BGP data.

Index Terms: Border gateway protocol (BGP) updates, principal
component analysis (PCA).

L INTRODUCTION

Given the critical nature of the Internet routing infrastruc-
ture, understanding border gateway protocol (BGP) routing dy-
namics and the underlying “root causes” is crucial, but at the
same time, very challenging [1]. In the recent years, several
efforts have been directed at the root cause analysis of BGP
updates [2]-[11], with the goal of locating where routing in-
stabilities occur. While these efforts have made significant ad-
vances, the take-away message that is underscored is that BGP
root cause analysis is extremely challenging. Several aspects of
inter-domain routing complicate this task and make it very hard:
First, the autonomous system (AS) paths carried in BGP up-
dates are highly abstracted, hiding many important connectivity
details, making it hard to accurately pinpoint the exact location
of an event. Also, specific routing policies may cause the rout-
ing updates to obfuscate and hide the actual events [12]. Second,
different events may trigger similar types of updates, making it
hard to distinguish the events based on information in the up-
dates. Third, given the size of the Internet, events are likely to
occur concurrently; thus the observed updates from these events
may be interleaved at a vantage point, further complicating the
identification of root causes.

In this paper, instead of tackling the problem of BGP root
cause analysis directly, we attempt to answer a fundamental
question to the understanding of BGP routing dynamics: Based
on a stream of BGP updates observed at one or more vantage
points, is it possible to identify and separate updates that are
likely triggered by distinct events? While addressing this ques-
tion, we are particularly interested in distinguishing between up-
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dates caused by “major” network events—those that trigger a
large number of updates and affect reachability to many ASes—
from those that can be attributed to “minor” events that indi-
vidually contribute few updates, but collectively form the BGP
“noise” observed at vantage points. We hope that by identifying
and separating BGP updates caused by major events, we can re-
duce the “noise” in the BGP updates associated with the events,
and thereby facilitate the task of root cause analysis. In the fol-
lowing we further motivate the question raised above and outline
the methodology that we propose to address this question.

We propose a novel methodology to statistically identify and
separate BGP updates triggered by major events, even when they
overlap with those caused by other (minor) events. Our method-
ology is based on principal component analysis (PCA), a well-
known statistical method for multivariate data analysis [11].
Using PCA, we exploit the temporal correlations in the up-
date streams to extract clusters of origin ASes whose prefixes
are likely affected by the same events. Using these (origin) AS
clusters, we perform “spatial correlation” and “type-of-change”
analysis to further validate and corroborate our findings. We
show that in most cases, the (origin) ASes within each AS clus-
ter exhibit strong common features (e.g., with shared providers
or their associated updates having similar type of changes).

The contributions in this paper can be summarized as fol-
lows:

e We propose a novel methodology to infer distinct (major)
events from BGP update streams and separate likely updates
associated with these events. In addition, we verify its effec-
tiveness and accuracy using simulations.

o The work that we present in this paper significantly advances
our understanding of BGP routing dynamics. In particular,
we show that correlated events occur quite frequently, which
is contrary to what is assumed in most efforts in root cause
analysis.

e The results presented in this paper can serve to inform and
guide algorithms used to perform BGP root cause analysis
and trouble-shooting.

The remainder of this paper is organized as follows.
Section II briefly discusses BGP operations and gives an
overview of PCA. In Section III, we describe the methodology.
Section IV demonstrates the accuracy and effectiveness of our
methodology through simulations. Section V presents the results
of our analysis on real BGP update streams. We discuss related
work in Section V1. Finally, Section VII concludes the paper.

II. A QUICK PRIMER ON BGP AND PCA
A. Border Gateway Protocol

BGP is an incremental, path-vector protocol. In other words,
once a session is established between neighboring routers, route
updates are exchanged only in response to routing events. Sup-
pose a session between a pair of BGP routers fails, the adja-
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cent routers initiate routing events and send BGP updates to
their neighbors. These updates indicate how “reachability” to
certain destinations has changed. For example, if the failure
caused a loss of reachability to a destination network, the router
will generate a withdrawal message, listing the network pre-
fixes that have become unreachable. On the other hand, if the
failure simply causes a path change (or if the router learns of
a previously unknown destination), then an announcement is
generated—containing a set of network prefixes, and associ-
ated path attributes. A patticularly relevant attribute is the AS
PATH, which indicates both the origin AS for the prefix, as
well as the sequence of ASes over which the route was prop-
agated. Upon receiving a BGP update from a neighbor, a router
might itself—after updating its own routing state—generate a
secondary route update. Thus, by the mechanism just described,
information about “events” propagates router by router through
the network.

As a valuable service to the networking community, pub-
lic “collection” sites such as Route-Views {13] and RIPE [14]
maintain BGP peering sessions with a number of routers in var-
ious ISP’s and log the received updates. For clarity, we will call
the time ordered sequence of updates observed at a single van-
tage point as a BGP update stream, and these form the starting
point for our methodology.

B. Principal Component Analysis

PCA (and its variant, factor analysis) is typically used to re-
duce the “dimensionality” of a data set and to uncover interre-
lated latent variables (or factors) in the original dataset. This is
accomplished by projecting the original data onto a lower di-
mensional space in a manner that preserves most of the variance
present in the original data. In the following, we present a brief
algorithmic description of PCA, focusing on the relevant details
(for a detailed discussion, see [15]).

Let X = [X;X; - -X,]T be ap x ¢ (observation) matrix of p
variables on a time interval divided into ¢ slots. In other words,
fort = 1,2,---, p, the row vector XZ-T represents a time series
of observations of a (observable) random variable, and Xij; is
its observed value at time slot j. Given this matrix X, PCA
proceeds as follows:

1. The (p x p) covariance matrix S = XX7 is computed. Sy
is the covariance of the random variables X, and X;.

2. Since S is square symmetric, all of its p eigenvalues are
real. Let Ay, A9, -+, A, be the rank-ordered eigenvalues
with corresponding eigenvectors a1, g, - - -, op,ie., Sa; =
Xic;, and af'a; = 1,1 < i < p. Note that the vectors {a;}
form an orthogonal basis for a p-dimensional space.

3. Fori = 1,2,---,p, the ith principal component (PC;) is
obtained by projecting the original data X onto the i dimen-
sion, i.e., PC; = ol X.

Since var(PC;) = var(a! X) = o XX%o; = o So;=
)\aiTozi = A;, we see that the variance captured by the ith
principal component is exactly described by the ith largest
eigenvalue. Also, o is the the direction along which the
original data has the largest variance and the fraction of vari-
ance captured is ST

Let PC = [ajay- - -a,)TX. Then PCA transforms the
space containing the “samples” of the p observable vari-
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ables {X;} into a new space of p principal components (la-
tent variables) denoted as {PC;}, where the first variable
PC; contains the most variance inherent in the original
data, and for ¢« = 2,-- -, p, the ith variable, PC;, contains
most of the variance in the remaining data (after remov-
ing the contributions of the previous 7 — 1 principal com-
ponents).

4. The final step in PCA is to project the original dataset onto
a (sub)space of reduced dimensionality to obtain an approx-
imate representation that preserves most of the variance. To
capture 8% of the variance of the original dataset, we find
the smallest m such that %;— > 0%. Then the projec-

=1
tion is described as:

A~

PC = [og, a3, -, am]TX.

The utility of PCA lies in the fact that in most situations,
m < p. In other words, the original data can be reduced (ap-
proximately) to a set of m dominant principal components (la-
tent variables or factors) containing the most variance. Note that
PC,; can be re-written as:

p
PC; = Q?X = [O{ilX1+' . --+-Ocipo]T = [Z Otinj]T. )]
j=1

Here, ay;, 7 = 1,---,p, is the coefficient (or PC loading) of
X ; for PC;. It describes the contribution of X; to the variance
captured by the sth principal component. To state it differently,
a5 indicates the influence of the ith latent variable (PC;) on
the variance of the observable variable X ;. These properties of
PCA are the key to our methodology, which uses PCA to ex-
ploit temporal correlation between BGP updates triggered by
the same event.

IIH. METHODOLOGY
A. Constructing BGP Update Matrix

An overall schematic depiction of our methodology is shown
in Fig. 1. In the first stage, we convert the update stream into
an appropriate observation matrix called the (BGP) update ma-
trix, denoted by X from a stream of BGP updates obtained dur-
ing an observation interval at a single BGP vantage point. Let
@ ={q1,q2, -, q} be the set of all prefixes for which at least
one update (announcement or withdrawal) was observed in the
interval, and let A = {a1,aq,- -, a;} be the set of correspond-
ing origin ASes that own these prefixes.

To construct the update matrix X, we first divide the observa-
tion interval into discrete time slots of size 6 = 30 seconds. This
particular choice of ¢ is motivated by results presented in [16],
[17], where it is shown that most updates for the same prefix ar-
rive at multiples of approximately 30 seconds. In each time slot
J, we calculate the number of distinct updates associated with an
origin AS ¢, denoted by Xi;. In other words, each row is a time
series of updates associated with each origin AS. For example,
the ith row of the matrix X, (X;1, Xj2, - - -, X4t), represents the
number of updates for the origin AS ¢ from the time 7" to T'+ 30t
seconds. X;; becomes 0 if there is no update for the origin AS ¢
during the jth time slot.
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Fig. 1. Overview of our methodology.
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Fig. 2. Eigen value distributions of the update matrix.

To reduce the effects of AS size, we normalize each row of
the update matrix into a standard form as follows. Let p; be
the sample mean of the update signal associated with AS i, i.e.,
=3 ;X /t (t is the number of time slots in the interval),
and o7 is the corresponding sample variance. Then the (normal-
ized) update matrix is X = [X;;], with Xij = (Xij — i)/ oi.
Now each row of X, XZT = [Xy;,1 < j < ], is a time series
with a zero mean and unit variance, and represents the relative
update “signal” strengths associated with AS i over the entire
observation interval. For each AS 4, the absolute value of Xij
indicates how much the observed update signal at time slot j
differs from the overall (mean) signal strength seen during the
observation period.

B. Selecting Dominant Principal Components

The second stage of our methodology is to select the domi-
nant principal components (PCs) that account for most of the
variances in the update signals, based on their associated eigen-
values. The intuition here is that these dominant PCs statistically
capture the underlying major network events that trigger the up-
dates. Let {\;, 1 < 4 < p} be the rank-ordered list of eigenval-
ues, the dominant PCs are selected based on the following two
conditions: given a threshold 8, 0 < 6 < 1, let m be the smallest
integer such that

m
M >0

?:1 A T
and A\, > 1.

The first condition specifies the desired cumulative variation
that the top m (dominant) PCs should account for. In practice,
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Fig. 3. Cumulative variance accounted for by top m PCs.

10000 T T T T

Number of ASes observed
Number of eigen values -----

1000 E

Size

100

L s
08/05 08/08

Time

1 L L .
2004/08/01  08/02 08/03 08/04 08/07 08/08

Fig. 4. Number of top m PCs accounting for most variations over a week.

g values in the range [0.7,0.9] are recommended [15], and in
our own analysis, we choose § = 0.8. The second condition is
referred to as Kaiser’s criterion [18]. It signifies that each dom-
inant PC should contain more variance than is associated with
a single variable (recall that each row in the normalized update
matrix has zero mean and unit variance). This test is important
in our analysis as otherwise we can always find a value m that
satisfies the first condition. By imposing Kaiser’s criterion, we
attempt to clearly separate “major” events that contribute large
variance in the update streams from “minor” events.

In the following, we use an example to illustrate the process
(and effect) of selecting the dominant PCs: We obtain (normal-
ized) update matrices from BGP update streams of four distinct
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vantage points, AS1239, AS1668, AS3130, and AS7018, cor-
responding to the same observation interval on August 2, 2004.
Fig. 2 is a scree plot of the eigenvalues of the update matrices
and Fig. 3 shows the corresponding cumulative variances associ-
ated with the rank-ordered eigenvalues. The latter figure clearly
shows that a few (approx. 4-13) of the largest eigenvalues ac-
count for almost all the variance in the original data. Moreover,
this number is an order of magnitude smaller than p =~ 300,
which is the number of rows of X. More importantly, this prop-
erty does not depend upon the particular observation interval, as
is shown in Fig. 4. Here, for each interval from a one-week long
update stream (collected from a single vantage point, AS1239),
we plot both the value of p (top curve) and m, the number of
dominant PCs that account for more than 80% of the variance of
the p original variables. It can be clearly seen that m is at most
15 in all the cases, while p is at least an order magnitude greater.
These observations show PCA may be a useful tool to analyze
BGP updates.

C. Extracting AS Clusters

Finally, we describe how each dominant PC is mapped to a
set of (origin) ASes that are likely affected by the same underly-
ing event. For ease of exposition, we refer to this set as an (ori-
gin) AS cluster. Extracting the AS cluster from each dominant
PC will enable us to study the “common features” (e.g., spa-
tial properties) shared by the ASes in the cluster, on dimensions
other than the temporal one. In particular, the last stage of our
methodology involves the use of topology and AS PATH infor-
mation to locate similarities between ASes in the same cluster.
Since the more detailed analyses are performed on a reduced set
of statistically correlated updates, they can not only help vali-
date and corroborate our methodology, but also yield potentially
insightful hints on the possible root causes of the underlying
events.

Recall from (1) that each dominant PC is a linear combina-
tion of the original observed variables (rows in the update ma-
trix). For a dominant PC;, the coefficient (PC loading) «;; re-
flects how much effect PC; has on the variance of the vari-
able X;, namely, the (normalized) update signals from AS j.
Let @; = max;<;j<nc;; be the maximal value of the coeffi-
cients. Our intent is to select all ASes that contribute approxi-
mately the same loading. To do this, we select all coefficients
ai,1 < j < p, such that oy; € [(1 — €)dy, a;]. The cor-
responding ASes are then grouped into an (origin) AS cluster
associated with PC,. The underlying intuition is that the un-
derlying “event” captured by PC; is most likely to affect those
variables (origin ASes) whose corresponding PC loadings are
close to the maximal value; thus updates associated with these
ASes are likely to be highly correlated. The parameter ¢ can be
used to control the “tolerance” of correlation among ASes in
the same cluster: Smaller values of ¢ will admit more ASes—
with less strongly correlated updates—into the clusters. In our
study, we have experimented with different values of ¢ in the
range [0.01,0.10] and observed that the composition of the AS
clusters does not change in a significant way across the range
of values. For convenience, we use € = (.05 for the remaining
analysis.
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Fig. 5. Event sets in the simulated topologies. The bold lines indicate
the actual path used by the vantage point. Dotted lines indicate links
that are availabie, but not used.

IV. SIMULATIONS
A. Simulation Set-up

We simulate a number of topology families, including Wax-
man and Power-law topologies using the SSFNet simulator
package [19]. To keep the description simple, we present the de-
tails of the simulations carried out on a single Power-law topol-
ogy of size 400.

We simulate two distinct kinds of dynamic events—major and
minor. For the former, we select nodes that have a high impact
on the topology, cause them to fail at a particular time and then
restore the node at a later time. For the minor events, we se-
lect nodes which have a very small impact on the topology and
cause them to periodically fail and be restored. Note that here,
a major event affects reachability to many ASes, while a minor
event affects only one or at most a few ASes. Moreover, minor
events are also periodic, generating persistent background up-
date “noises,” whereas major events have a large impact but last
a smaller duration, triggering a burst of updates in a relatively
short period of time. The insight for choosing major and minor
events in this manner comes from the results presented in [4].

For each simulation run, we generate a set of 10 events, with
a 60% of the events being minor and the remaining as major
events, The arrival times for the events are generated from an
exponential process with mean set to the convergence time of
the topology.

B. Simulation Results

First, we study whether the clusters obtained using our
method do in fact corresponded to the expected set of ASes.
From the static topology, we determine the composition of AS
clusters that we expect for each distinct event. Consider Fig. 5.
Here when node 8 fails (or is repaired), we expect that the pre-
fixes associated with nodes in the larger shaded region are af-
fected, the updates for these will be seen at the vantage point.
Note that only node 8 becomes unreachable—all other nodes can
be reached via alternate paths. Similarly, when node 3 fails, the
only node affected is itself (as shown in the figure). Thus, given
the path set from the vantage point, we associate every event
with an expected set of (origin) ASes that are affected by the
event. The expected sets are then compared with the inferred
AS clusters, obtained by applying our methodology to the up-
dates collected at the vantage point during the simulation. For
each cluster, we identify the “event node,” i.e., the node affected
by the failure (or repair). If an inferred AS cluster contains an
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event node, we consider it as a candidate cluster.

Ideally, the expected sets should match up perfectly with the
inferred AS clusters. In order to determine how good the match-
ing is, we define two metrics, recall and precision, which we
define as follows. Let Sg denote the expected set and Sy the in-
ferred AS cluster. Finally, Sp; = Sg U Sy is the set of matched
ASes that are common to both. Then, we define the recall, ex-
pressed as a percentage, as: recall = 1Sul 5 100% and the

1SE]
precision (also expressed as a percentage) as: precision =
[Sml

X 100%.

We plot these two measures for all the “inferred” (major)
events (there are 339 in all), over more than 100 simulations
in Figs. 6(a) and 6(b). As shown in Fig. 6(a), the recall for
most inferred events is over 80%, while the average value is
93.1%. This indicates that in almost all the cases, our methodol-
ogy places most of the affected ASes in the inferred AS clusters.
Similarly, as shown in Fig. 6(b), the precision is over 90% for
all but a few events, indicating that the inferred clusters capture
those elements that are in the appropriate expected ser with very
low noise. These results show that our methodology captures the
(simulated) events with high accuracy.

Next, we study how effective our methodology is in sepa-
rating ASes/updates associated with distinct events, even when
they are occurring concurrently? To address this question, we set
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up the simulations such that multiple (major and minor) events
often occur close together, triggering updates that are mixed at
the vantage point. In order to quantify “concurrent” events, we
count the number of overlapping events corresponding to each
inferred event. Note that each event can be associated with a set
of timestamps. For example, event i is associated with the set
of timestamps 7; = {¢;1,%;2," -, ti,m }, Where each timestamp
t; k is the time at which the kth dynamic occurs (which could be
a failure or a repair event). For major events, we have £ < 2.
Given a major event ¢ and any other event j, we say that ¢ and j
are overlapping events if they contain timestamps that are 3 sec-
onds apart. Formally, event j overlaps with event 4 if and only
if
Jtsx € 75,3t € 7; suchthat [t; 5 —t;1] < 5.

Thus, events overlap if they trigger updates within 60 seconds
(30 seconds) of each other.

For each major event that is inferred, we count the number of
overlapping events. The results show that, on average, there are
about 2 other events that overlap with each major event. Most
of the major events overlap with one or two other events, and
there are a few events that overlap with more than 3 events.
However, in spite of multiple overlapping events which gener-
ate interleaved updates, our methodology has very high recail
and precision. This shows that our methodology is indeed very
effective in separating updates triggered by distinct events that
occur close together.

V. REAL BGP UPDATE STREAMS

We now present the resuits of applying our methodology upon
real BGP data collected from Route-Views. In particular, we an-
alyze data collected in Aug. 2004 and Sept. 2004. Our first find-
ing is that major events occur relatively often. The median num-
ber of events in each (approx. 15 min long) interval is 12 (for
both the datasets that we have analyzed). These observations in-
dicate that routing events occur frequently and often close to-
gether, triggering BGP updates that are likely to be interleaved.

Next, we study the duration of the “inferred” events, defined
as follows. For each AS cluster, we reconstitute the actual up-
dates for every AS in the cluster; in other words, for each AS in
a given cluster, we reproduce the original update stream by fil-
tering the appropriate prefixes. Then the duration of each prefix-
specific event is the the time elapsed between the first and last
updates. The event duration is the largest prefix-specific duration
among all those obtained from the same AS cluster. As observed
in the results, 72% of all the events last less than 180 seconds
(3 minutes). In particular, there are a few events that last close
to 900 seconds. We believe that these correspond to the “persis-
tently flapping” events, described in {41, which last for long pe-
riods of time. However, since we divide the update stream into
disjoint intervals, such events are independently inferred in each
of the intervals.

The “impact” of the inferred events can be defined either in
terms of the number of ASes affected or in terms of the num-
ber of affected network prefixes. We find that 90% of the in-
ferred events contain fewer than 11 ASes, and in 90% of the
events, less than 52 network prefixes are impacted, i.e., there is



a change in reachability. At the same time, there are also a num-
ber of events which affect hundreds (even thousands) of ASes
and network prefixes in some observation intervals. We expect
that these inferred events can be traced to large scale routing
events.

To validate and corroborate that ASes in the same cluster ob-
tained via our PCA analysis are plausibly affected by the same
actual event, we introduce three metrics as a measure of “com-
mon feature” that are shared by the ASes in the cluster: Domi-
nant change type, dominant provider, and dominant country

The metric of dominant change type is developed based on
the “type of change” classification discussed in [4]. For a given
cluster, the dominant change type is the class associated with
the most prefixes in the cluster. For example, if some cluster C
is associated with k; + kg prefixes, such that & is of type re-
route, k9 is to of type prefix-up, with ky > ky, then the dominant
change type is re-route. Also, k; is referred to as the size of the
dominant change type set. The dominant change type accounts
for more than 80% in over 80% of the events. The results in-
dicate that in the case of most large events, i.e., associated with
large AS clusters, almost all the prefixes are affected in the same
way. Thus, it is plausible to believe that the ASes (and prefixes)
in the cluster are affected by the same event.

Given an AS cluster, we identify the dominant provider as
follows: For each AS in the cluster, we first obtain the AS
Path from the vantage point to the AS prior to the event, in
other words the stable path(s) for the prefixes in the cluster. By
treating these stable paths as a directed set of edges, we con-
struct a tree-like subgraph with the vantage point as the root.
With each node z in this subgraph, we associate a value p(z),
which is simply the number of downstream customers that be-
long to this cluster [20]. Note that p(x) is exactly the number of
ASes that would be affected by an event at z. Finally, the dom-
inant provider is the node Z: p(&) > p(x), i.e., the node with
the largest value. For clarity, we describe p(Z) as the dominant
provider contribution. In general, the dominant provider contri-
bution accounts for more than 80% of the size of the AS cluster
in over 88% of the events. Thus, the AS clusters identified by
our methodology are likely affected by the same network event.

Given an AS cluster, we could easily compute the percent-
age of ASes in each country as its contribution of the cluster. In
addition, we sort these countries based on the percertages in a
non-increaing manner. As a result, the first (dominant) country
always has the largest contribution to the cluster. As observed
in the real BGP data, most ASes within one cluster are from
the same countries. These observations are consistent with the
above intuition that region routing events often trigger routing
updates of ASes in the same region. On the other hand, there
are a few cases, especailly, those large AS clusters, in which the
first country explains only part of ASes in the cluster. Such clus-
ters are likely caused by the major routing events which have a
global impact.

To summarize, in most of the large events (i.e., with large
AS cluster size), the ASes and associated prefixes contained in
the cluster seem to share strong common features that may be
traced to the same event. Thus, based on these observations, we
may plausibly believe that the AS clusters obtained through our
methodology are likely to have their genesis in actual, distinct
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events [21].

V1. RELATED WORK

Understanding BGP dynamics and their underlying “root
causes” is an extremely challenging problem due to the inher-
ent complexity of inter-domain routing. Recently, a number of
efforts have tried to address this problem. In all of these efforts,
the goal is to infer the approximate location of routing insta-
bilities by analyzing BGP updates collected at multiple vantage
points along three independent dimensions—time, prefix, and
vantage point. However, as discussed in [12], there are several
pitfalls associated with inferring events based only upon BGP
update data. In our work, rather than attempt the harder prob-
lem of identifying the location of routing events, we use a statis-
tical approach to separate updates triggered by distinct events.
In particular, the results that we present can serve to “inform”
the traditional approaches to performing root cause analysis.

In [22], Andersen et al., use a clustering technique upon BGP
updates collected over a long interval to identify “hidden” topo-
logical relationships between network prefixes. The intuition is
that prefixes that are updated together over a very long period,
then it is likely that they are located close to each other. While
our work also shares this underlying intuition, our objectives
and methodology are very different. In particular, we are look-
ing at correlations over a shorter time with the intent of inferring
network events.

VII. CONCLUSIONS

In this paper, we have proposed a novel methodology for iden-
tifying and separate BGP updates associated with major events.
The methodology is based on PCA, a well-known multivariate
data analysis technique, which enables us to exploit the tempo-
ral correlations in the update streams to extract clusters of ori-
gin ASes whose prefixes are likely affected by the same network
events. Subsequently, we perform spatial correlation and “type-
of-change” analysis on the extracted AS clusters and their asso-
ciated updates to further validate and corroborate our findings.
Through extensive simulations and evaluations using real BGP
update streams, we find that in most cases, ASes in a cluster ex-
hibit the same type of routing changes and/or are well correlated
spatially (in a topological sense). We believe that our methodol-
ogy can potentially help characterize the nature of the BGP up-
date streams and narrow down the problem space for root cause
analysis and trouble-shooting.

REFERENCES

[1] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771,
Mar., 1995,

[2] T. Griffin, “What is the sound of one route flapping?” Netw. Modeling and
Simulation Summer Workshop, 2002.

[31 D.Chang, R. Govindan, and J. Heidemann, “The temporal and topological
characteristics of BGP path changes,” in Proc. ICNP, 2003.

[4] M. Caesar, L. Subramanian, and R. Katz, “Root cause analysis of Internet
routing dynamics,” U.C. Berkeley, Tech. Rep. UCB/CSD-04-1302, Nov.
2003.

[5] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs, “Locating
Internet routing instabilities,” in Proc. ACM SIGCOMM, 2004.

[6] M. Lad, D. Massey, and L. Zhang, “Link-rank: A graphical tool for cap-
turing bgp routing dynamiics,” in Proc. IEEF/IPIF NOMS, Apr. 2004,



XU et al.: PRINCIPAL COMPONENT ANALY SIS OF BGP UPDATE STREAMS

7

(8]

9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
(17
[18]
{19]
[20]

[21]

[22]

J. Rexford, J. Wu, Z. M. Mao, and J. Wang, “Finding a needle in a
haystack: Pinpointing significant bgp routing changes in an ip network,”
in Proc. NSDI, 2005.

D. Massey, M. Lad, R. Oliveira, and L. Zhang, “Inferring the origin of
routing changes using link weights,” in Proc. Int. Conf. Netw. Protocols,
2007.

J. Gottlieb, L. Wang, M. Saranu, and D. Pei, “Understanding bgp session
failures in a large isp,” in Proc. INFOCOM, 2007.

Z. M. Mao, Y. Zhang, and M. Zhang, “Effective diagnosis of routing dis-
ruptions from end systems,” in Proc. NSDI, 2008.

K. Xu, J. Chandrashekar, and Z.-L.. Zhang, “A first step towards under-
standing inter-domain routing,” in Proc. ACM SIGCOMM Workshop on
Mining Netw. Data, Philadelphia, 2005.

R. Teixeira and J. Rexford, “A measurement framework for pin-pointing
routing changes,” in Proc. ACM SIGCOMM Netw. Troubleshooting Work-
shop, 2004.

University of Oregon. Routeviews archive project. [Online]. Available:
http://archive. routeviews.org/

RIPE. Routing information service raw data. [Online]. Available: http:/
data.ris.ripe.net/

I. T. Jolliffe, Principal Component Analysis, 2nd ed. Spinger Series in
Statistics, 2002.

M. Mao, R. Bush, T. Griffin, and M. Roughan, “BGP beacons,” in Proc.
Internet Meas. Conf., 2003.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing
convergence,” IEEE/ACM Trans. Netw., 2001.

H. F. Kaiser, “The application of electronic computers to factor analysis,”
Educational and Psychological Meas., 1960.

SSFNET.  Scalable simulation framework. [Online]. Available: http:/
www.ssfnet.org

L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characteriz-
ing the Internet hierarchy from multiple vantage points,” in Proc. IEEE
INFOCOM, 2002.

K. Xu, J. Chandrashekar, and Z.-L.. Zhang, “Inferring major events from
BGP update streams,” University of Minnesota, Dept. of Computer Sci-
ence, Tech. Rep. 04-043, 2004.

D. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan, “Topology in-
ference from BGP routing dynamics,” in Proc. Internet Meas. Workshop,
Nov., 2002.

197

Kuai Xu is currently an Assistant Professor at Ari-
zona State University. He received his Ph.D. degree in
Computer Science from the University of Minnesota
in 2006, and his B.S. and M.S. degrees in Computer
Science from Peking University, China, in 1998 and
2001. His research interests include network security
and cloud computing. He is a Member of ACM and
IEEE.

Jaideep Chandrashekar received a B.E. degree from
Bangalore University, India, in 1997 and a Ph.D. from
the University of Minnesota in December 2005. He is
currently with Intel Research in Santa Clara, CA. His
research interests include computer networks and dis-
tributed systems, especially Internet technologies, net-
work routing, and computer security. He is a Member
of ACM and IEEE.

Zhi-Li Zhang received the B.S. degree in Computer
Science from Nanjing University, China, in 1986 and,
his M.S. and Ph.D. degrees in Computer Science from
the University of Massachusetts in 1992 and 1997.
In 1997, he joined the Computer Science and Engi-
neering Faculty at the University of Minnesota, where
he is currently a Professor. His research interests in-
clude computer communication and networks. He is
co-recipient of an ACM SIGMETRICS Best Paper
Award and an IEEE International Conference on Net-
work Protocols (ICNP) Best Paper Award. He is a

Member of IEEE, ACM and INFORMS Telecommunication Section.



