DOI QR코드

DOI QR Code

Effects of Halide Anions to Absorb SO2 in Ionic Liquids

  • Lee, Ki-Young (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Chang-Soo (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hong-Gon (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Cheong, Min-Serk (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Mukherjee, Deb Kumar (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Jung, Kwang-Deog (Clean Energy Research Center, Korea Institute of Science and Technology)
  • Received : 2010.01.19
  • Accepted : 2010.05.10
  • Published : 2010.07.20

Abstract

Ionic liquids with halide anions were prepared and the dependency of halide anions on the $SO_2$ solubility of ILs was investigated. The study shows that the $SO_2$ solubility of ionic liquids lies in the range 1.91~2.22 $SO_2$/ILs mol ratio. $SO_2$ solubility in ionic liquids with varying halide anions follows the order Br > Cl > I. Theoretical investigation was also conducted at the B3LYP level using the Gaussian 03 program. From the theoretical consideration of the interaction between $SO_2$ and [EMIm]X (where X = Cl, Br, and I), it has been proposed that primary interaction of halide occurs with $C_2$-H of the imidazolium and S of $SO_2$. Experimental results further shows that the absorption and desorption process of $SO_2$ in ILs was reversible by the three cycles of the absorption at $50^{\circ}C$ and desorption at $140^{\circ}C$. The reversibility of $SO_2$ absorption was confirmed by FT-IR studies.

Keywords

References

  1. Ma, X.; Kaneko, T.; Tashimo, T.; Yoshida, T.; Kato, K. Chem. Eng. Sci. 2000, 49, 4643.
  2. Rao, A. B.; Rubin, E. S. Environ. Sci. Technol. 2002, 36, 4467. https://doi.org/10.1021/es0158861
  3. Lee, K. Y.; Gong, G. T.; Song, K. H.; Kim H.; Jung, K. D.; Kim, C. S. Int. J. of Hydrogen Energy 2008, 33, 6031. https://doi.org/10.1016/j.ijhydene.2008.08.002
  4. Rogers, R. D.; Seddon, K. R. Ionic Liquids: Industrial Applications to Green Chemistry; Oxford University Press: Washington, D.C., 2002.
  5. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., Jr. J. Am. Chem. Soc. 2002, 124, 926. https://doi.org/10.1021/ja017593d
  6. Ren, S. H.; Hou, Y. C.; Wu, W. Z.; Fan, J. L.; Zhang, J. W. Ind. Eng. Chem. Res. 2009, 48, 4928. https://doi.org/10.1021/ie9000844
  7. Yokozeki, A.; Shiflett, M. B. Energy & Fuels 2009, 23, 4701. https://doi.org/10.1021/ef900649c
  8. Yuan, X. L.; Zhang, S. J.; Lu, X. M. J. Chem. Eng. Data 2007, 52, 596. https://doi.org/10.1021/je060479w
  9. Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J. Angew Chem. 2004, 43, 2415. https://doi.org/10.1002/anie.200353437
  10. Huang, J.; Riisager, A.; Wasserscheid, P.; Fehrmann, R. Chem. Comm. 2006, 4027.
  11. Prasad, B. R.; Senapati, S. J. Phys. Chem. B 2009, 113, 4739. https://doi.org/10.1021/jp805249h
  12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 03, revision C.02, Gaussian, Inc., Pittsburgh, PA, 2004.
  13. Shelton, R. D.; Nielsen, A. H.; Fletcher, W. H. J. Chem. Phys. 1953, 21, 2178. https://doi.org/10.1063/1.1698806
  14. Maybury, R. H.; Gordon, S.; Katz, J. J. J. Chem. Phys. 1955, 23, 1277. https://doi.org/10.1063/1.1742257
  15. Ando, R. A.; Siqueira, L. J. A.; Bazito, F. C.; Torresi, R. M.; Santos, P. S. J. Phys. Chem. B 2007, 111, 8717. https://doi.org/10.1021/jp0743572
  16. Eisfeld, W.; Regitz, M. J. Am. Chem. Soc. 1996, 118, 11918. https://doi.org/10.1021/ja961398v

Cited by

  1. Binary Ionic Liquids with a Common Cation: Insight into Nanoscopic Mixing by Infrared Spectroscopy vol.2, pp.23, 2011, https://doi.org/10.1021/jz201323a
  2. Steric hindrance-induced zwitterionic carbonates from alkanolamines and CO2: highly efficient CO2 absorbents vol.4, pp.10, 2011, https://doi.org/10.1039/c1ee01801a
  3. Ether-functionalized ionic liquids as highly efficient SO2 absorbents vol.4, pp.5, 2011, https://doi.org/10.1039/c0ee00616e
  4. Two-Dimensional Infrared Correlation Spectroscopy and Principal Component Analysis on the Carbonation of Sterically Hindered Alkanolamines vol.13, pp.14, 2012, https://doi.org/10.1002/cphc.201200363
  5. Absorption Media vol.18, pp.1, 2012, https://doi.org/10.7464/ksct.2012.18.1.022
  6. Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines vol.15, pp.7, 2013, https://doi.org/10.1039/c3gc40592c
  7. Absorption/Desorption Characteristics of Two Novel Phosphate Ionic Liquids vol.48, pp.18, 2013, https://doi.org/10.1080/01496395.2013.805781
  8. at High Temperatures by Ionic Liquids and the Absorption Mechanism vol.35, pp.9, 2014, https://doi.org/10.5012/bkcs.2014.35.9.2791
  9. -Containing Species vol.48, pp.7, 2014, https://doi.org/10.1021/es405036m
  10. Capture vol.53, pp.43, 2014, https://doi.org/10.1021/ie5027265
  11. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation–Anion Network vol.44, pp.3-4, 2015, https://doi.org/10.1007/s10953-015-0321-5
  12. capture by tuning functional groups on the cation of pyridinium-based ionic liquids vol.5, pp.4, 2015, https://doi.org/10.1039/C4RA13469A
  13. Green SO2 conversion from flue gas by pH variation vol.18, pp.2, 2016, https://doi.org/10.1007/s10098-015-1034-6
  14. by EmimCl-EG Deep Eutectic Solvents vol.5, pp.8, 2017, https://doi.org/10.1021/acssuschemeng.7b01554
  15. The solvation inhomogeneity of sulfur dioxide in 1-butyl-3-methylimidazolium thiocyanate ionic liquid probed by Raman spectroscopy pp.03770486, 2017, https://doi.org/10.1002/jrs.5270
  16. absorption in EmimCl–TEG deep eutectic solvents vol.20, pp.22, 2018, https://doi.org/10.1039/C8CP02250J
  17. 물분해 수소제조를 위한 SI cycle에서의 EMIm[$EtSO_4$]를 이용한 $SO_2/O_2$ 분리공정 vol.22, pp.1, 2010, https://doi.org/10.7316/khnes.2011.22.1.013
  18. Efficient capture of SO2 by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water vol.194, pp.None, 2010, https://doi.org/10.1016/j.jhazmat.2011.07.059
  19. Diamine-Anchored Polystyrene Resins for Reversible SO2 Adsorption vol.4, pp.4, 2010, https://doi.org/10.1021/acssuschemeng.5b01325
  20. Highly Efficient and Reversible Capture of Low Partial Pressure SO2 by Functional Deep Eutectic Solvents vol.32, pp.10, 2018, https://doi.org/10.1021/acs.energyfuels.8b01794
  21. Efficient Absorption of SO2 by [Emim][Cl]-[Emim][SCN] Ionic Liquid Mixtures vol.32, pp.10, 2010, https://doi.org/10.1021/acs.energyfuels.8b02488
  22. PEG-Linked Functionalized Dicationic Ionic Liquids for Highly Efficient SO2 Capture through Physical Absorption vol.32, pp.12, 2010, https://doi.org/10.1021/acs.energyfuels.8b02802
  23. Recent Advances in Ionic Liquid-Mediated SO2 Capture vol.58, pp.31, 2019, https://doi.org/10.1021/acs.iecr.9b01959
  24. Efficient and Reversible SO2 Absorption by Environmentally Friendly Task-Specific Deep Eutectic Solvents of PPZBr + Gly vol.7, pp.16, 2010, https://doi.org/10.1021/acssuschemeng.9b03245
  25. Bisazole-Based Deep Eutectic Solvents for Efficient SO2 Absorption and Conversion without Any Additives vol.8, pp.7, 2010, https://doi.org/10.1021/acssuschemeng.9b07735
  26. Deep Eutectic Solvents Consisting of 1‐Ethyl‐3‐methylimidazolium Chloride and Biobased 2‐Pyrrolidone for Reversible SO 2 Capture vol.5, pp.24, 2010, https://doi.org/10.1002/slct.202001201
  27. The capture of a dilute stream of industrially generated sulfur dioxide in an aqueous solution of the ionic liquid 1-butyl-3-methylimidazolium chloride [bmim][Cl] vol.207, pp.11, 2010, https://doi.org/10.1080/00986445.2019.1668786
  28. Investigation of Highly Efficient and Reversible Absorption of SO2 Using Ternary Functional Deep Eutectic Solvents vol.8, pp.43, 2020, https://doi.org/10.1021/acssuschemeng.0c05480
  29. Metal-free glycosylation with glycosyl fluorides in liquid SO2 vol.17, pp.None, 2010, https://doi.org/10.3762/bjoc.17.78
  30. Efficient SO2 Absorption by Anion-Functionalized Deep Eutectic Solvents vol.60, pp.12, 2010, https://doi.org/10.1021/acs.iecr.0c04981
  31. A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature vol.98, pp.None, 2021, https://doi.org/10.1016/j.jiec.2021.04.006
  32. Capture of Acidic Gases from Flue Gas by Deep Eutectic Solvents vol.9, pp.8, 2010, https://doi.org/10.3390/pr9081268
  33. Highly efficient and reversible low-concentration SO2 absorption in flue gas using novel phosphonium-based deep eutectic solvents with different substituents vol.340, pp.None, 2010, https://doi.org/10.1016/j.molliq.2021.117228
  34. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids vol.7, pp.1, 2010, https://doi.org/10.1016/j.gee.2020.08.008