DOI QR코드

DOI QR Code

A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex

  • Lee, Ji-Eun (Central Instrument Facility and Department of Chemistry, Gyeongsang National University) ;
  • Choi, Kyu-Seong (Department of Science Education, Kyungnam University) ;
  • Seo, Moo-Lyong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2010.03.22
  • Accepted : 2010.05.31
  • Published : 2010.07.20

Abstract

A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of $Hg^{2+}$. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of $Hg^{2+}$. In addition, L showed large anodic shift (~ 0.3 V) for the addition of excess $Hg^{2+}$. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexs of L which shows a 1-D polymer network with a formula $[Hg_2(L)_2(NO_3)_2({\mu}-NO_3)_2]_n$ was also reported.

Keywords

References

  1. Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtle, F., Lehn, J.-M., Eds.; Comprehensive Supramolecular Chemistry; Pergamon/Elsevier: Oxford, UK, 1996; Vol. 1, pp 635-669.
  2. Czarnik, A. W., Ed.; Fluorescent Chemosensors for Ion and Molecule Recognition; American Chemical Society: Washington, D.C., 1992.
  3. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41. https://doi.org/10.1016/S0010-8545(00)00238-1
  4. Dix, J. P.; Vögtle, F. Chem. Ber. 1980, 113, 457. https://doi.org/10.1002/cber.19801130206
  5. Chemosensors for Ion and Molecular Recognition; Desvergne, J. P., Czarnik, A. W., Eds.; Kluwer: Dordrecht, 1997.
  6. Sancenon, F.; Martinez-Manez, R.; Soto, J. Angew. Chem., Int. Ed. 2002, 41, 1416. https://doi.org/10.1002/1521-3773(20020415)41:8<1416::AID-ANIE1416>3.0.CO;2-2
  7. Beer, P. D.; Cadman, J. Coord. Chem. Rev. 2000, 205, 131. https://doi.org/10.1016/S0010-8545(00)00237-X
  8. Lloris, J. M.; Martínez-Máñez, R.; Pardo, T.; Soto, J.; Padilla- Tosta, M. E. J. Chem. Soc., Dalton Trans. 1998, 2635.
  9. Boiocchi, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D.; Vazquez, M.; Zampa, C. Chem. Commun. 2003, 1812.
  10. Caballero, A.; Martínez- Manez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J. J. Am. Chem. Soc. 2005, 127, 15666. https://doi.org/10.1021/ja0545766
  11. Jiménez, D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J. Tetrahedron Lett. 2004, 45, 1257. https://doi.org/10.1016/j.tetlet.2003.11.123
  12. Jin, Y.; Yoon, I.; Seo, J.; Lee, J.-E.; Moon, S.-T.; Kim, J.; Han, S. W.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2005, 788.
  13. Yoon, I.; Seo, J.; Lee, J.-E.; Song, M. R.; Lee, S. Y.; Choi, K. S.; Jung, O.-S.; Park, K.-M.; Lee, S. S. Dalton Trans. 2005, 2352.
  14. Yoon, I.; Seo, J.; Lee, J.-E.; Park, K.-M.; Kim, J. S.; Lah, M. S.; Lee, S. S. Inorg. Chem. 2006, 45, 3487. https://doi.org/10.1021/ic060005i
  15. Seo, J.; Song, M. R.; Lee, J.-E.; Lee, S. Y.; Yoon, I.; Park, K.-M.; Kim, J.; Jung, J. H.; Park, S. B.; Lee, S. S. Inorg. Chem. 2006, 45, 952. https://doi.org/10.1021/ic051764o
  16. Lee, S. Y.; Park, S.; Kim, H. J.; Jung, J. H.; Lee, S. S. Inorg. Chem. 2008, 47, 1913. https://doi.org/10.1021/ic702496e
  17. Sultana, K. F.; Lee, S. Y.; Lee, J. Y.; Park, K.-M.; Lee, S. S. Bull. Korean Chem. Soc. 2008, 29, 241. https://doi.org/10.5012/bkcs.2008.29.1.241
  18. Lee, J.-E.; Jin, Y.; Seo, J.; Yoon, I.; Song, M. R.; Lee, S. Y.; Park, K.-M.; Lee, S. S. Bull. Korean Chem. Soc. 2006, 27, 203. https://doi.org/10.5012/bkcs.2006.27.2.203
  19. Seo, J.; Lee, S. S.; Gong, W.-T.; Hiratani, K. Tetrahedron Lett. 2008, 49, 3770. https://doi.org/10.1016/j.tetlet.2008.04.013
  20. Choi, K. S.; Kang, D.; Lee, J.-E.; Seo, J.; Lee, S. S. Bull. Korean Chem. Soc. 2006, 27, 747. https://doi.org/10.5012/bkcs.2006.27.5.747
  21. Janzen, D. E.; Mahne, L. F.; VanDerveer, D. G.; Grant, G. J. Inorg. Chem. 2005, 44, 8182. https://doi.org/10.1021/ic0511874
  22. Vetrichelvan, M.; Lai, Y.-H.; Mok, K. F. Eur. J. Inorg. Chem. 2004, 2086.
  23. Contu, F.; Dermartin, F.; Devillanova, F. A.; Garau, A.; Isaia, F.; Lippolis, V.; Salis, A.; Verani, G. J. Chem. Soc., Dalton Trans. 1997, 4401.
  24. Watzky, M. A.; Waknine, D.; Heeg, M. J.; Endicott, J. F.; Ochrymowyzc, L. A. Inorg. Chem. 1993, 32, 4882. https://doi.org/10.1021/ic00074a038
  25. Blake, A. J.; Halcrow, M. A.; Schröder, M. J. Chem. Soc., Dalton Trans. 1992, 2803.
  26. Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Org. Lett. 2006, 8, 1641. https://doi.org/10.1021/ol0602405
  27. Lee, H. G.; Lee, J.- E.; Choi, K. S. Inorg. Chem. Commun. 2006, 9, 582. https://doi.org/10.1016/j.inoche.2006.03.005
  28. Lee, H.; Lee, S. S. Org. Lett. 2009, 11, 1393. https://doi.org/10.1021/ol900241p
  29. Park, C. S.; Lee, J. Y.; Kang, E.-J.; Lee, J.-E.; Lee, S. S. Tetrahedron Lett. 2009, 50, 671. https://doi.org/10.1016/j.tetlet.2008.11.090
  30. Raposo, M. M. M.; Sousa, A. M. R. C.; Kirsch, G.; Ferreira, F.; Belsley, M.; de M.Gomes, E.; Maurício A.; Fonseca, C. Tetrahedron 2005, 61, 11991. https://doi.org/10.1016/j.tet.2005.09.062
  31. Bruker, SMART and SAINT: Area Detector Control and Integration Software Ver. 5.0; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.
  32. Bruker, SHELXTL: Structure Determination Programs Ver. 5.16; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.

Cited by

  1. -Donor Macrocyclic Fluoroionophores Exhibiting Mercury(II)-Selectivity vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4117
  2. Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes vol.55, pp.15, 2016, https://doi.org/10.1021/acs.inorgchem.6b00690
  3. Mechanistic insights into heavy metal ion sensing by NOS2-macrocyclic fluorosensors via the structure-function relationship: influences of fluorophores, solvents and anions vol.145, pp.5, 2010, https://doi.org/10.1039/c9an02466b