INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP

Sangwon Park and Jinsun Jeong

Abstract. In this paper we show that the flat property of a left R-module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an R[x]-module, i.e., given an R-linear map \(f : M \to N \) of left R-modules, we define \(N + x^{-1}M[x^{-1}] \) as a left \(R[x] \)-module. Given an exact sequence of left R-modules

\[
0 \to N \to E^0 \to E^1 \to 0,
\]

where \(E^0, E^1 \) injective, we show \(E^1 + x^{-1}E^0([x^{-1}]) \) is not an injective left \(R[x] \)-module, while \(E^0([x^{-1}]) \) is an injective left \(R[x] \)-module. Make a left R-module \(N \) as a left \(R[x] \)-module by \(xN = 0 \). We show

\[
\text{inj dim}_R N = n \quad \text{implies} \quad \text{inj dim}_{R[x]} N = n + 1
\]

by using the induced inverse polynomial modules and their properties.

1. Introduction

If \(R \) is a left Noetherian ring, then for an injective left \(R \)-module \(E, E[x^{-1}] \) is an injective left \(R[x] \)-module ([2], [3]). But for a projective left \(R \)-module \(P, P[x^{-1}] \) is not a projective left \(R[x] \)-module, in general ([5]). We extend this question to the flat module and we show that for a flat left \(R \)-module \(F, F[x^{-1}] \) is not a flat left \(R[x] \)-module, in general. Then we construct an induced inverse polynomial as an \(R[x] \)-module. Let \(M \) and \(N \) be left \(R \)-modules and \(f : M \to N \) be an \(R \)-linear map. Then we can define \(N + x^{-1}M[x^{-1}] \) as a left \(R[x] \)-module defined by

\[
x(b_0 + a_1 x^{-1} + \cdots + a_n x^{-n}) = b_1 + a_2 x^{-1} + \cdots + a_n x^{-n+1},
\]

where \(f(a_1) = b_1, b_0 \in N, \) and \(a_i \in M \). Given an exact sequence of \(R \)-modules

\[
0 \to N \to E^0 \to E^1 \to 0,
\]

Received January 29, 2009.

2000 Mathematics Subject Classification. Primary 16E30; Secondary 13C11, 16D80.

Key words and phrases. flat module, injective module, inverse polynomial module, induced module.

This study was supported by research funds from Dong-A University.

©2010 The Korean Mathematical Society
where \(E^0, E^1 \) are injective, we show \(E^1 + x^{-1}E^0[x^{-1}] \) is not an injective left \(R[x] \)-module, while \(E^0[x^{-1}] \) is an injective left \(R[x] \)-module. Make a left \(R \)-module \(N \) as a left \(R[x] \)-module by \(xN = 0 \). We show
\[
\text{inj dim}_R N = n \implies \text{inj dim}_{R[x]} N = n + 1
\]
by using the inverse polynomial modules. Inverse polynomial modules were developed in ([1], [6], [7], [8]) recently.

Definition 1.1 ([4]). Let \(R \) be a ring and \(M \) be a left \(R \)-module. Then \(M[x^{-1}] \) is a left \(R[x] \)-module defined by
\[
x(m_0 + m_1x^{-1} + \cdots + m_ix^{-i}) = m_1 + m_2x^{-1} + \cdots + m_ix^{-i+1}
\]
and such that
\[
r(m_0 + m_1x^{-1} + \cdots + m_ix^{-n}) = rm_0 + rm_1x^{-1} + \cdots + rm_ix^{-n},
\]
where \(r \in R \). We call \(M[x^{-1}] \) as an inverse polynomial module.

Similarly, we can define \(M[[x^{-1}]], M[x, x^{-1}], M[[x, x^{-1}]], M[x, x^{-1}] \) and \(M[[x, x^{-1}]] \) as left \(R[x] \)-modules where, for example, \(M[[x, x^{-1}]] \) is the set of Laurent series in \(x \) with coefficients in \(M \), i.e., the set of all formal sums \(\sum_{k \geq n_0} m_kx^k \) with \(n_0 \) any element of \(\mathbb{Z} \) (\(\mathbb{Z} \) is the set of all integers).

Lemma 1.2 ([8]). Let \(E \) be a left \(R \)-module. Then \(E[[x^{-1}]] \) is an injective left \(R[x] \)-module.

Lemma 1.3. If \(E[[x^{-1}]] \) is an injective left \(R[x] \)-module, then \(E \) is an injective left \(R \)-module.

Proof. Let \(I \) be a left ideal of \(R \) and \(f : I \to E \) be an \(R \)-linear map. Then since \(E[[x^{-1}]] \) is an injective left \(R[x] \)-module, we can complete the following diagram by \(g \)

\[
\begin{array}{ccc}
0 & \xrightarrow{f} & I[[x^{-1}]] \\
\downarrow & & \downarrow f[[x^{-1}]] \\
E[[x^{-1}]] & \xrightarrow{g} & R[[x^{-1}]]
\end{array}
\]

as a commutative diagram, where \(f[[x^{-1}])(\sum_{i=0}^{\infty} r_ix^{-i}) = \sum_{i=0}^{\infty} f(r_i)x^{-i} \). Since \(xR = 0, xg(R) = 0 \) in \(E[[x^{-1}]] \). But this implies \(g(R) \subset E \). Thus \(E | g|_R : R \to E \) can complete the following diagram.
as a commutative diagram. Hence, E is an injective left R-module. \hfill \Box

Lemma 1.4. Let M be a left R-module. Then

\[\text{inj} \dim_{R[x]} M[[x^{-1}]] = \text{inj} \dim_{R} M. \]

Proof. Suppose $\text{inj} \dim_{R} M = n$ and

\[0 \to M \to E^0 \to E^1 \to \cdots \to E^n \to 0 \]

is an injective resolution of M. Then by Lemma 1.2, for each i, $E^i[[x^{-1}]]$ is an injective left $R[x]$-module and

\[0 \to M[[x^{-1}]] \to E^0[[x^{-1}]] \to E^1[[x^{-1}]] \to \cdots \to E^n[[x^{-1}]] \to 0 \]

is an injective resolution of $M[[x^{-1}]]$. Let $K^i = \ker(E^i \to E^{i+1})$ for $0 \leq i < n$. Then K^i is not an injective left R-module for $0 \leq i < n$. So by Lemma 1.3, $K^i[[x^{-1}]]$ is not an injective left $R[x]$-module. So then we get $\text{inj} \dim_{R[x]} M[[x^{-1}]] = n$. Suppose $\text{inj} \dim_{R} M = \infty$ and

\[0 \to M \to E^0 \to E^1 \to \cdots \to E^n \to \cdots \]

is an injective resolution of M. Then

\[0 \to M[[x^{-1}]] \to E^0[[x^{-1}]] \to E^1[[x^{-1}]] \to \cdots \to E^n[[x^{-1}]] \to \cdots \]

is an injective resolution of $M[[x^{-1}]]$. But K^i is not an injective left R-module for all i. Thus $K^i[[x^{-1}]]$ is not an injective left $R[x]$-module for all i. Therefore, $\text{inj} \dim_{R[x]} M[[x^{-1}]] = \infty$. Similarly, if $\text{inj} \dim_{R[x]} M[[x^{-1}]] = n$, then $\text{inj} \dim_{R} M = n$, and if $\text{inj} \dim_{R[x]} M[[x^{-1}]] = \infty$, then $\text{inj} \dim_{R} M = \infty$. Hence, $\text{inj} \dim_{R[x]} M[[x^{-1}]] = \text{inj} \dim_{R} M$. \hfill \Box

2. Flat module

Lemma 2.1. Let M be a left R-module. Then $R[x] \otimes_{R[x]} M[x^{-1}] \cong M[x^{-1}]$.

Proof. Define $\phi : M[x^{-1}] \to R[x] \otimes M[x^{-1}]$ by $\phi(f) = 1 \otimes f$ and $\psi : R[x] \otimes M[x^{-1}] \to M[x^{-1}]$ by $\psi(x \otimes f) = xf$. Then ϕ and ψ are $R[x]$-linear maps. And

\[(\phi \circ \psi)(x \otimes f) = \phi(\psi(x \otimes f)) = \phi(xf) = 1 \otimes xf = x \otimes f, \]

\[(\psi \circ \phi)(f) = \psi(\phi(f)) = \psi(1 \otimes f) = f. \]

Hence, $R[x] \otimes_{R[x]} M[x^{-1}] \cong M[x^{-1}]$. \hfill \Box
Similarly, we can get $R[x] \otimes_{R[x]} M[[x^{-1}]] \cong M[[x^{-1}]]$.

Theorem 2.2. If F is a flat left R-module, then $F[x^{-1}]$ is not a flat left $R[x]$-module, in general.

Proof. Let $R = \mathbb{R}$ (the ring of real numbers). Let $\phi : R[x] \to R[x]$ be defined by $\phi(f) = xf$. Then ϕ is a left $R[x]$-linear map. Consider $\phi \otimes_{R[x]} \text{id}_{F[x^{-1}]} : R[x] \otimes_{R[x]} F[x^{-1}] \to R[x] \otimes_{R[x]} F[x^{-1}]$ defined by $(g \otimes ax)(bx^{-1}) = abx^{-1}$, where $a, b \in \mathbb{R}$. Since $R[x] \otimes_{\mathbb{R}} F[x^{-1}] \cong F[x^{-1}]$, we have the following commutative diagram. But $(h \circ f)(ax \otimes bx^{-1}) = (g \circ \phi)(ax \otimes bx^{-1})$ implies $h(ab) = 0$. Thus $h : F[x^{-1}] \to F[x^{-1}]$ is not injective, so that $\phi \otimes_{R[x]} \text{id}_{F[x^{-1}]}$ is not injective. Hence, $F[x^{-1}]$ is not a flat left $R[x]$-module. □

Remark 1. Since $R[x] \otimes_{\mathbb{R}} M[[x^{-1}]] \cong M[[x^{-1}]]$, we also see that $F[[x^{-1}]]$ is not a flat left $R[x]$-module.

3. Induced inverse polynomial modules

Definition 3.1. Let $f : M \to N$ be an R-linear map. Then $N + x^{-1}M[x^{-1}]$ is a left $R[x]$-module defined by

$$x(b_0 + a_1x^{-1} + \cdots + a_nx^{-n}) = b_1 + a_2x^{-1} + \cdots + a_nx^{-n+1},$$

where $f(a_1) = b_1$, $b_0 \in N$, $a_i \in M$.

Similarly, we can define $N + x^{-1}M[[x^{-1}]]$ as a left $R[x]$-module.

Note. Given a left R-module M, we can make M as a left $R[x]$-module by defining $xM = 0$.

Lemma 3.2. If $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is a short exact sequence of R-modules, then

$$0 \to L \to M[x^{-1}] \to N + x^{-1}M[x^{-1}] \to 0$$

is a short exact sequence of $R[x]$-modules.
Proof. Let $f[x^{-1}] : L \to M[x^{-1}]$ be defined by $f[x^{-1}](n) = f(n)$ for $n \in L$. Then since f is an injective R-linear map, $f[x^{-1}]$ is an injective $R[x]$-linear map. Let $g[x^{-1}] : M[x^{-1}] \to N + x^{-1}M[x^{-1}]$ be defined by

$$g[x^{-1}](e_0 + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i}) = g(e_0) + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i}.$$

Then easily $g[x^{-1}]$ is an $R[x]$-linear map. Let $b_0 + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i} \in N + x^{-1}M[x^{-1}]$. Then since g is a surjective R-linear map, there exists $e_0 \in M$ such that $g(e_0) = b_0$. So, $g[x^{-1}]$ is a surjective $R[x]$-linear map. Now

$$(g[x^{-1}] \circ f[x^{-1}](n) = g[x^{-1}](f(n)) = g(f(n)) = 0.$$

And if $e_0 + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i} \in \ker g[x^{-1}]$, where $e_i \in M$, then

$$g[x^{-1}](e_0 + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i}) = g(e_0) + e_1x^{-1} + e_2x^{-2} + \cdots + e_ix^{-i} = 0.$$

So $g(e_0) = 0$, $e_1 = e_2 = \cdots = e_i = 0$, which implies $e_0 \in \ker g = \text{Im} f = f(L)$. Hence,

$$0 \to L \to M[x^{-1}] \to N + x^{-1}M[x^{-1}] \to 0$$

is a short exact sequence of $R[x]$-modules. \hfill \Box

Similarly, given a short exact sequence $0 \to L \to M \to N \to 0$ of R-modules, we get a short exact sequence $0 \to L \to M[[x^{-1}]] \to N + x^{-1}M[[x^{-1}]] \to 0$ of $R[x]$-modules.

Lemma 3.3. Let $0 \to N \xrightarrow{f} E^0 \xrightarrow{g} E^1 \to 0$ be a short exact sequence of R-modules, where E^0, E^1 are injective with $\text{injdim}_R N = 1$. Then $E^1 + x^{-1}E^0[[x^{-1}]]$ is not an injective left $R[x]$-module.

Proof. Suppose $E^1 + x^{-1}E^0[[x^{-1}]]$ is an injective left $R[x]$-module. Then there exists a $R[x]$-linear map ϕ which completes the following diagram

$$
\begin{array}{ccc}
0 & \longrightarrow & E^1 \\
\downarrow{id} & & \downarrow{\phi} \\
E^1 & \longrightarrow & E^1 + x^{-1}E^1
\end{array}
$$

\hfill \Box
Then there exists an R-linear map $h : E^1 \to E^0$ such that $g \circ h = \text{id}_{E^1}$. But since $\text{inj} \dim_R N = 1$, $0 \to N \xrightarrow{f} E^0 \xrightarrow{g} E^1 \to 0$ is not split, which implies a contradiction. Hence, $E^1 + x^{-1}E^0[[x^{-1}]]$ is not an injective left $R[x]$-module.

Similarly, given a short exact sequence $0 \to N \to E^0 \to E^1 \to 0$ of R-modules with E^0, E^1 injective and $\text{inj} \dim_R N = 1$, we see that $E^1 + x^{-1}E^0[[x^{-1}]]$ is not an injective left $R[x]$-module.

Theorem 3.4. Let $\text{inj} \dim_R N = n$ (with $N \neq 0$). Make N into an left $R[x]$-module so that $xN = 0$. Then

$$\text{inj} \dim_{R[x]} N = n + 1.$$

Proof. Let N be a left R-module. Then

$$\text{inj} \dim_R N = \text{inj} \dim_{R[x]} N[[x^{-1}]] = n.$$

And we have the short exact sequence of $R[x]$-modules

$$0 \to N \to N[[x^{-1}]] \to N[[x^{-1}]] \to 0.$$

Then $\text{inj} \dim_{R[x]} N \leq (\text{inj} \dim_R N) + 1 = n + 1$. Since if N is an injective $R[x]$-module, then N is an injective R-module so that

$$\text{inj} \dim_R N \leq \text{inj} \dim_{R[x]} N \leq (\text{inj} \dim_R N) + 1.$$

Now by induction on n, if $n = 0$, then we want to show $\text{inj} \dim_{R[x]} N = 1$. But $\text{inj} \dim_R N = 0$ means that N is an injective R-module. If N is an injective $R[x]$-module, then N is divisible by x. But $xN = 0$. Thus N is not divisible by x. Thus N is an injective $R[x]$-module. Therefore, $\text{inj} \dim_{R[x]} N \neq 0$, i.e., $\text{inj} \dim_{R[x]} N = 1$.

If $n = 1$, then we have a short exact sequence $0 \to N \to E^0 \to E^1 \to 0$ of R-modules with E^0, E^1 injective. Then by Lemma 3.3, $E^1 + x^{-1}E^0[[x^{-1}]]$ is not an injective left $R[x]$-module and by Lemma 3.2, $0 \to N \to E^0[[x^{-1}]] \to E^1 + x^{-1}E^0[[x^{-1}]] \to 0$ is a short exact sequence. Therefore, $\text{inj} \dim_{R[x]} N = 2$.

Now we suppose $\text{inj} \dim_{R[x]} N = n > 1$ and make the obvious induction hypothesis. Let $0 \to N \to E \to L \to 0$ be an exact sequence of left R-modules with E injective. Then $\text{inj} \dim_R L = n - 1$. Now make N, E, L into $R[x]$-modules with $xN = 0$, $xE = 0$, $xL = 0$. Then $\text{inj} \dim_{R[x]} E = 1$ and by the induction hypothesis we know $\text{inj} \dim_{R[x]} L = n$. Using the long exact sequence of $\text{Ext}_{R[x]}(A, -)$ where A is any left R-module, we get that $\text{inj} \dim_{R[x]} N = n + 1$. \hfill \Box

References

Sangwon Park
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail address: svpark@donga.ac.kr

Jinsun Jeong
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail address: jsjeong@donga.ac.kr