THE ALTERNATIVE DUNFORD-PETTIS PROPERTY IN
SUBSPACES OF OPERATOR IDEALS

S. Mohammad Moshtaghioun

Abstract. For several Banach spaces X and Y and operator ideal U, if $U(X, Y)$ denotes the component of operator ideal U; according to Freedman’s definitions, it is shown that a necessary and sufficient condition for a closed subspace M of $U(X, Y)$ to have the alternative Dunford-Pettis property is that all evaluation operators $\phi_x : M \rightarrow Y$ and $\psi_{y^*} : M \rightarrow X^*$ are DP1 operators, where $\phi_x(T) = Tx$ and $\psi_{y^*}(T) = T^*y^*$ for $x \in X$, $y^* \in Y^*$ and $T \in M$.

1. Introduction

A Banach space X has the Dunford-Pettis property (DP) if for each weakly convergent sequences $x_n \rightarrow x$ in X and $x_n^* \rightarrow 0$ in X^*, we have $x_n^*(x_n) \rightarrow 0$ as $n \rightarrow \infty$. But if under the additional condition $\|x_n\| = \|x\| = 1$ for all integer n, the conclusion $x_n^*(x_n) \rightarrow 0$ is obtained, we say that X has the alternative Dunford-Pettis property (DP1).

As an easy consequence of definition, the Banach space X has the DP1 if and only if for each weakly null sequences (x_n) in X and (x_n^*) in X^* and each $x \in X$ with $\|x_n + x\| = \|x\| = 1$, we have $x_n^*(x_n) \rightarrow 0$. An straightforward computation also shows that one can replace the condition $\|x_n\| = \|x\| = 1$, in the definition, by the weaker condition $\|x_n\| \rightarrow \|x\|$. For example, the standard sequence spaces c_0, l_1, l_{∞} and all $L^1(\mu)$ and $C(K)$ spaces, for each compact Hausdorff K, have the DP and so DP1 property [10].

The concept of DP1 which has introduced by Freedman in [12], is in general weaker than the DP; for example every (infinite dimensional) Hilbert space has DP1, but does not have the DP [10, 12]. Also there are Banach spaces such as von Neumann algebras, that the DP1 and the DP on them are coincide [12].

Another concept which has introduced by Freedman is the concept of DP1 operators, that is weaker than the concept of completely continuous operators. A bounded linear operator $T : X \rightarrow Y$ between Banach spaces X and Y is called...
completely continuous or Dunford-Pettis operator, if T maps weakly convergent sequences to norm convergent sequences, and the operator T is said to be a DP1 operator if T carries weakly convergent sequences on the unit sphere of X to norm convergent sequences. This means that for every weakly convergent sequence $x_n \to x$ in X with $\|x_n\| = \|x\| = 1$, we have $\|Tx_n - Tx\| \to 0$. We refer the reader to [5], [6] and [15] for valuable results on DP1.

In [14], the authors have obtained some characterizations of arbitrary Banach space X which contains no copy of l_1 and has the DP (or equivalently, the dual X^* of X has the Schur property, i.e., weak and norm convergence of sequences in X^* are coincident), with respect to compactness of every weakly compact operator T from X into arbitrary Banach space Y. A similar result, among other things, will be found about Banach spaces with the DP or DP1 property in [10, Theorem 1] and [12, Theorem 1.4]. Specially, a Banach space X has the DP property if and only if every weakly compact operator $T : X \to Y$ is completely continuous; while X has the DP1 property if and only if every weakly compact operator $T : X \to Y$ is DP1. If M is a closed subspace of some operator ideals, there is a well known refinement of it about the Dunford-Pettis property.

If U is a (Banach) operator ideal, by meaning of [9] or [16], let $U(X, Y)$ be any its component and M be a closed subspace of it. For each $x \in X$ and $y^* \in Y^*$, we denote the evaluation operators at x and y^* respectively, by $\phi_x : M \to Y$ and $\psi_{y^*} : M \to X^*$ where, $\phi_x(T) = Tx$, $\psi_{y^*}(T) = T^*y^*$ and $T \in M$. We also use the standard notations $K_w^*(X^*, Y)$ and $K(X, Y)$ for the Banach spaces of all compact weak*-weak continuous operators and all compact operators between related Banach spaces. $K(X)$ is an abbreviation of $K(X, X)$; $\langle x, x^* \rangle$ denotes the duality between $x \in X$ and $x^* \in X^*$ and T^* refers to the adjoint of the operator T.

In [18], A. Ülger proved that for any Hilbert space H, if $M \subseteq K(H)$ is a closed subspace, then M has the DP (or equivalently M^* has the Schur property) if and only if all evaluation operators $\phi_x : M \to H$ and $\psi_{y^*} : M \to H$ are compact operators if and only if all evaluation operators are completely continuous. The same conclusion has obtained by E. Saksman and H. O. Tylli in [17] for closed subspaces of $K(l_p)$ with $1 < p < \infty$.

In [14], the authors extend these conclusions to closed subspaces of several operator ideals. They proved that for a large class of Banach spaces X and Y, the Schur property of the dual M^* of closed subspace M of arbitrary operator ideal $\mathcal{U}(X, Y)$, is a sufficient condition for compactness and so complete continuity of all evaluation operators ϕ_x and ψ_{y^*}.

On the opposite direction, they have shown that for several Banach spaces X and Y with Schauder decompositions, if M is a closed subspace of $K(X, Y)$ or $K_w^*(X^*, Y)$, then the Schur property of M^* is a necessary condition for compactness of all point evaluations.

Also, in [1], the authors study the DP1 property for closed subspaces of $K(X, Y)$, where X and Y admit Schauder basis and the basis of X is shrinking;
and they proved some necessary and sufficient conditions for the DP1 property of suitable subspaces of $K(X,Y)$.

Here, we will show that similar consequences of [14], that extend some results of [1], remain valid for the DP1 property and a suitable class of closed subspaces of some operator ideals, where in this case the evaluation operators must be assumed DP1 operators.

2. Main results

Recall that, by Freedman’s Theorem [12], an arbitrary Banach space X has the DP1 property if and only if every weakly compact operator T from X into arbitrary Banach space Y is DP1. So, in order to prove a key result of this article, one can give a necessary and sufficient condition among Banach spaces containing no copy of l_1 to have the DP1.

Theorem 2.1. A Banach space X containing no copy of l_1 has the DP1 property if and only if for every weakly sequentially complete (wsc) Banach space Y, every operator $T : X \to Y$ is DP1.

Proof. Suppose that X has the DP1 and $T : X \to Y$ is an operator into wsc Banach space Y. If (x_n) is an arbitrary sequence in the unit ball of X, then by Rosenthal’s l_1-Theorem [11], (x_n) has a weakly Cauchy subsequence (x_{nk}). This shows that (Tx_{nk}) is weakly Cauchy and so is weakly convergent. Therefore the operator T is weakly compact and the hypothesis of DP1 property of X implies that T is DP1.

On the other hand, since by Davis-Figiel-Johnson-Pelczynski’s Theorem [11], every weakly compact operator factors through a reflexive (and so wsc) Banach space, the opposite implication is also clear. □

Theorem 2.2. Suppose that X^* and Y are wsc and $M \subseteq U(X,Y)$ is a closed subspace containing no copy of l_1. If M has the DP1, then all of the evaluation operators ϕ_x and ψ_{y^*} are DP1 operators.

Proof. Since X^* and Y are wsc, by Theorem 2.1, the bounded linear operators ϕ_x and ψ_{y^*} are DP1. □

Notice that if X and Y are two reflexive Banach spaces, a referring to Freedman’s Theorem imply the same conclusion, without any assumption on non containment of l_1 by M. This assertion also treated in [1].

If X and Y are Banach lattices, X contains no complemented copy of l_1 and Y contains no copy of c_0, then X^* and Y are wsc [13, V.II] and we can apply Theorem 2.2 for any closed subspace $M \subseteq U(X,Y)$. As another corollary, if instead of X and Y, the closed subspace $M \subseteq U(X,Y)$ is a Banach lattice, we have the following corollary which can be proved by the same method applied in the proof of Corollary 2.4 of [14]:

Corollary 2.3. Suppose that X contains no complemented copy of l_1 and Y contains no copy of c_0. If $M \subseteq U(X,Y)$ is a Banach lattice containing no copy
of l_1 and satisfying the DP1, then all of the evaluation operators ϕ_x and ψ_y^* are DP1 operators.

Here we use similar techniques to those in [1] and [14] to obtain some characterizations of the DP1 property for suitable closed subspaces of some compact operator ideals between Banach spaces that extend some results of [1]. We need some notations.

If V is a complemented subspace of a Banach space X, the projection of X onto V is denoted by P_V and $P_{V'} = I - P_V$ is the projection onto complementary subspace V' of V. As mentioned in [14], if $(X_n)_{n=1}^\infty$ and $(Y_n)_{n=1}^\infty$ are Schauder decompositions of X and Y respectively, and $M \subseteq U(X, Y)$ is a closed subspace, we say that M has the \mathcal{P}-property if for all integers m_0 and n_0 and every operators $T, S \in M$,

$$
\|P_WTP_V + P_WSP_V\| \leq \max\{\|P_WTP_V\|, \|P_WSP_V\|\},
$$

where $V = X_1 \oplus \cdots \oplus X_{m_0}$ and $W = Y_1 \oplus \cdots \oplus Y_{n_0}$. Finally, if $(X_n)_{n=1}^\infty$ is a shrinking Schauder decomposition for X [13], we denote the corresponding Schauder decomposition of X^* by $(X_n^*)_{n=1}^\infty$.

Theorem 2.4. Let X and Y have monotone finite dimensional Schauder decompositions (abb. FDD) such that the decomposition of X is shrinking. Let M be a closed subspace of $K_{w^*}(X^*, Y)$ which has the \mathcal{P}-property. If all of the evaluation operators ϕ_x^* and ψ_y^* are DP1 operators, then M has the DP1 property.

Proof. Suppose that $(X_n)_{n=1}^\infty$ and $(Y_n)_{n=1}^\infty$ are finite dimensional Schauder decompositions of X and Y respectively. Since the decompositions of X^* and Y are monotone $\|P_V\| = \|P_W\| = 1$, and $\|P_{W'}\| \leq 2$ for all $V = X_1^* \oplus \cdots \oplus X_{m_0}$ and $W = Y_1^* \oplus \cdots \oplus Y_{n_0}$.

Let $(K_n) \subseteq M$ and $(\Gamma_n) \subseteq M^*$ be weakly null sequences in M and M^* respectively and $K \in M$ such that $\|K\| = \|K_n + K\| = 1$ and there exists $r > 0$ such that for all integer n, $|(K_n, \Gamma_n)| \geq r$. Let (ε_n) be a sequence of positive numbers such that $\sum \varepsilon_n < \infty$.

We shall construct by induction, subsequences (Λ_n) of (Γ_n) and (S_n) of (K_n) such that for all n, there exist (finite dimensional) subspaces V and W of X^* and Y respectively, satisfying the following properties:

$$
\|S_iP_V\| \leq \varepsilon_{n+1}\text{ and } \|P_{W^*}S_i\| \leq \varepsilon_{n+1} \text{ for all } i = 1, 2, \ldots, n,
$$

$$
|\langle S_i, \Lambda_{n+1}\rangle| < r2^{-(n+1)}, \text{ } i = 1, 2, \ldots, n,
$$

$$
|\langle S_{n+1}, \Lambda_{n+1}\rangle| > r \text{ and } |\langle S_{n+1}, \Lambda_i\rangle| \leq r2^{-(n+1)}, \text{ } i = 1, 2, \ldots, n,
$$

$$
\|S_{n+1}P_V\| \leq \varepsilon_{n+1}\text{ and } \|P_{W^*}S_{n+1}\| \leq \varepsilon_{n+1}.
$$

Suppose that $\Lambda_1 = \Gamma_1$, and $S_1 = K_1$ and inductively, suppose that $\Lambda_1, \ldots, \Lambda_n \in (\Gamma_n)$ and $S_1, \ldots, S_n \in (K_n)$ have been chosen. To obtain Λ_{n+1} and S_{n+1}, by Lemma 3.2 of [14] we find finite dimensional subspaces $V = X_1^* \oplus \cdots \oplus X_{m_0}$
and $W = Y_1 \oplus \cdots \oplus Y_{n_0}$ of X^* and Y respectively, such that
\[
\|S_i P_V\| \leq \varepsilon_{n+1} \text{ and } \|P_W S_i\| \leq \varepsilon_{n+1} \text{ for all } i = 1, 2, \ldots, n.
\]
Since P_V and P_W are finite rank operators, it is easy to check that the operators $K \mapsto K P_V$ and $K \mapsto P_W K$ from \mathcal{M} into $\mathcal{K}_{w^*}(X^*, Y)$ are DP1 (see for instance, Remark 2.3 of [1]). Thus by hypothesis on (K_n) we have
\[
\|K_n P_V\| \to 0 \text{ and } \|P_W K_n\| \to 0 \text{ as } n \to \infty.
\]
So there exists an integer $N_1 > 0$ such that for all $j \geq N_1$:
\[
\|K_j P_V\| \leq \varepsilon_{n+1} \text{ and } \|P_W K_j\| \leq \varepsilon_{n+1}.
\]
On the other hand, the weak nullity of the sequences (K_n) and (Γ_n) imply the existence of two integers N_2 and N_3 such that
\[
|\langle K_j, \Lambda_i \rangle| < r 2^{-(n+1)} \text{ for all } i = 1, 2, \ldots, n, \text{ and all } j \geq N_2,
\]
\[
|\langle \Gamma_j, \Lambda_i \rangle| < r 2^{-(n+1)} \text{ for all } i = 1, 2, \ldots, n, \text{ and all } j \geq N_3.
\]
Now select an integer j_0 bigger than N_1, N_2 and N_3 and set $\Lambda_{n+1} = \Gamma_{j_0}$ and $S_{n+1} = K_{j_0}$. This finishes the induction process. We have constructed a subsequence (Λ_n) of (Γ_n) and a subsequence (S_n) of (K_n) such that for all integer n, there exist finite dimensional subspaces V and W of X^* and Y respectively, that satisfy all conditions of (\star). These properties, as shown in [14], yield that
\[
\left\| P_W \sum_{i=1}^{n} S_i P_V - \sum_{i=1}^{n} S_i \right\| \leq 4n\varepsilon_{n+1} \text{ and } \|P_W S_{n+1} P_V - S_{n+1}\| \leq 5\varepsilon_{n+1}.
\]
Hence
\[
\left\| \sum_{i=1}^{n+1} S_i \right\| \leq \left\| \sum_{i=1}^{n} S_i - P_W \sum_{i=1}^{n} S_i P_V \right\| + \left\| S_{n+1} - P_W S_{n+1} P_V \right\| + \left\| P_W \sum_{i=1}^{n} S_i P_V + P_W S_{n+1} P_V \right\|
\]
\[
\leq (4n + 5)\varepsilon_{n+1} + \max \left\{ \left\| \sum_{i=1}^{n} S_i \right\|, 8 \right\}.
\]
Note that the last inequality holds by the \mathcal{P}-property of \mathcal{M} and that $\|S_{n+1}\| \leq 2$. This shows that the sequence $T_n = \sum_{i=1}^{n} S_i$ is bounded and so has a weak*-cluster point $T \in \mathcal{M}^{**}$. For each j, choose an integer $n > j$ such that $|\langle T - T_n, \Lambda_j \rangle| < r 2^{-j}$. Therefore
\[
|\langle T, \Lambda_j \rangle| \geq |\langle T_n, \Lambda_j \rangle| - |\langle T - T_n, \Lambda_j \rangle|
\]
\[
\geq \left| \sum_{i=1}^{n} \langle S_i, \Lambda_j \rangle \right| - \frac{r}{2^j}.
\]
\[|\langle S_j, \Lambda_j \rangle | - \sum_{i=j+1}^{n} |\langle S_i, \Lambda_j \rangle | - \frac{r}{2^j} \geq |\langle S_j, \Lambda_j \rangle | - \sum_{i=1}^{j-1} |\langle S_i, \Lambda_j \rangle | - \frac{r}{2^j} \geq r - \sum_{i=1}^{j-1} \frac{r}{2^i} - \sum_{i=j+1}^{n} \frac{r}{2^i} = r - r(\sum_{i=1}^{j-1} \frac{1}{2^i} + \sum_{i=j+1}^{n} \frac{1}{2^i}) = \frac{r}{2^j} \geq r - r(\sum_{i=2}^{\infty} \frac{1}{2^i}) = \frac{r}{2} - \frac{r}{2} + \frac{r}{3} > \frac{r}{3} > 0 \]

for sufficiently large \(j \). Hence \(\langle T, \Lambda_j \rangle \) and so \(\langle T, \Gamma_j \rangle \) does not tend to zero. Thus the sequence \((\Gamma_j) \) does not converge weakly to zero, which gives a contradiction. □

Remark 2.5. Note that the proof of Lemma 3.2 of [14] is based on the fact that for each bounded and weak*-weak continuous operator \(K : X^* \to Y \), the adjoint operator \(K^* \) maps elements of \(Y^* \) into \(X \). So we need \(M \subseteq K_{w^*}(X^*, Y) \). In fact, under the same assumptions of Theorem 2.4, if \(M \subseteq K(X^*, Y) \), the conclusion of Lemma 3.2 of [14] is false. However, under the same assumptions on \(X \) and \(Y \), a similar result can be inferred for closed subspaces of \(K(X,Y) \):

Theorem 2.6. Let \(X \) and \(Y \) have monotone FDDs, such that the decomposition of \(X \) is shrinking. Let \(M \) be a closed subspace of \(K(X,Y) \) which has the \(\mathcal{P} \)-property. If all of the evaluation operators \(\phi_x \) and \(\psi_y^* \) are DP1 operators, then \(M \) has the DP1 property.

If \(X \) is an \(l_p \)-direct sum and \(Y \) is an \(l_q \)-direct sum of Banach spaces with \(1 < p \leq q < \infty \), or \(X \) has a Schauder decomposition and \(Y \) is a \(c_0 \)-direct sum of Banach spaces, then the proof of Corollaries 3.5 and 3.6 of [14] shows that \(K(X,Y) \) (resp. \(K_{w^*}(X^*, Y) \)) and so its closed subspace \(M \) has the \(\mathcal{P} \)-property. So we have the following two corollaries:

Corollary 2.7. Let \(X \) be an \(l_p \)-direct sum and \(Y \) be an \(l_q \)-direct sum of finite dimensional Banach spaces and \(1 < p \leq q < \infty \). If \(M \) is a closed subspace of \(K(X,Y) \) such that all evaluation operators \(\phi_x \) and \(\psi_y^* \) are DP1 operators, then \(M \) has the DP1 property.

Corollary 2.8. Let \(X \) have a monotone shrinking FDD and \(Y \) be a \(c_0 \)-direct sum of finite dimensional Banach spaces. If \(M \) is either a closed subspace of \(K(X,Y) \) or \(K_{w^*}(X^*, Y) \) such that all of the corresponding evaluation operators are DP1, then \(M \) has the DP1 property.

Remark 2.9. The proof of Theorem 2.4 is based on the facts that for each two Banach spaces \(X \) and \(Y \) with monotone (shrinking) FDDs, suitable closed subspaces of them are complemented and Lemma 3.2 of [14] is valid. By [3], in
the Hilbert space setting, a lemma similar to that lemma is valid; every closed subspace of a Hilbert space is complemented and an inequality similar to that of the definition of P-property holds for operators between two Hilbert spaces. So by a proof similar to Theorem 2.4 one can prove the following theorem:

Theorem 2.10. Let H_1 and H_2 be two Hilbert spaces and M be a closed subspace of $K(H_1, H_2)$. Then M has the DP1 property if and only if all of the evaluation operators ϕ_x and ψ_y are DP1 operators.

Acknowledgement. I would like to express my deepest gratitude to the referee for his useful suggestions and introducing some valuable references.

References

Department of Mathematics
University of Yazd
89195-741, Yazd, Iran
E-mail address: moshtagh@yazduni.ac.ir