DOI QR코드

DOI QR Code

STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES

  • Mirmostafaee, Alireza Kamel (DEPARTMENT OF PURE MATHEMATICS CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES FERDOWSI UNIVERSITY OF MASHHAD)
  • Received : 2009.02.17
  • Published : 2010.07.31

Abstract

Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X $\rightarrow$ Y, which satisfies the inequality ${\parallel}{\Delta}_x^nf(y)\;-\;n!f(x){\parallel}\;{\leq}\;\varphi(x,y)$ for suitable control function $\varphi$, there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of $t\;{\mapsto}\;f(tx)$ and $t\;{\mapsto}\;\varphi(tx,\;ty)$ imply the continuity of $t\;{\mapsto}\;M(tx)$.

Keywords

References

  1. M. Albert and J. A. Baker, Functions with bounded nth differences, Ann. Polon. Math. 43 (1983), no. 1, 93–103. https://doi.org/10.4064/ap-43-1-93-103
  2. T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588–594. https://doi.org/10.3792/pia/1195573733
  3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064
  4. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000.
  5. D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237. https://doi.org/10.1090/S0002-9904-1951-09511-7
  6. L. Cadariu and V. Radu, Remarks on the stability of monomial functional equations, Fixed Point Theory 8 (2007), no. 2, 201–218.
  7. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  8. A. Gilanyi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA 96 (1999), no. 19, 10588–10590. https://doi.org/10.1073/pnas.96.19.10588
  9. A. Gilanyi, On the stability of monomial functional equations, Publ. Math. Debrecen 56 (2000), no. 1-2, 201–212.
  10. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222
  11. D. H. Hyers, Transformations with bounded mth differences, Pacific J. Math. 11 (1961), 591–602. https://doi.org/10.2140/pjm.1961.11.591
  12. S.-M. Jung, T.-S. Kim, and K.-S. Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc. 43 (2006), no. 3, 531–541. https://doi.org/10.4134/BKMS.2006.43.3.531
  13. Z. Kaiser, On stability of the monomial functional equation in normed spaces over fields with valuation, J. Math. Anal. Appl. 322 (2006), no. 2, 1188–1198. https://doi.org/10.1016/j.jmaa.2005.04.087
  14. Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), no. 2, 397–403. https://doi.org/10.4134/BKMS.2008.45.2.397
  15. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91–96.
  16. J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J. 9 (2005), no. 7, 190–199.
  17. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  18. S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964.
  19. D. Wolna, The stability of monomial functions on a restricted domain, Aequationes Math. 72 (2006), no. 1-2, 100–109. https://doi.org/10.1007/s00010-006-2832-z

Cited by

  1. Recursive procedure in the stability of Fréchet polynomials vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1847-2014-16