DOI QR코드

DOI QR Code

Isolation of Anti-inflammatory Active Substance β-Sitosterol from Seabuckthorn (Hippophae rhamnoides L.) Stem

비타민나무(Hippophae rhamnoides L.) 줄기로부터 항염 활성물질 β-Sitosterol의 분리

  • Park, Yu-Hwa (Gangwon Provincial Agricultural Research & Extention Services) ;
  • Lim, Sang-Hyun (Gangwon Provincial Agricultural Research & Extention Services) ;
  • Ham, Hun-Ju (Gangwon Provincial Agricultural Research & Extention Services) ;
  • Kim, Hee-Yeon (Gangwon Provincial Agricultural Research & Extention Services) ;
  • Jeong, Haet-Nim (Ginseng & Medicinal Plants Experiment Station) ;
  • Kim, Kyung-Hee (Gangwon Provincial Agricultural Research & Extention Services) ;
  • Kim, Song-Mun (Dept. of Biological Environment, Kangwon National University)
  • 박유화 (강원도 농업기술원 농산물이용시험장) ;
  • 임상현 (강원도 농업기술원 농산물이용시험장) ;
  • 함헌주 (강원도 농업기술원 농산물이용시험장) ;
  • 김희연 (강원도 농업기술원 농산물이용시험장) ;
  • 정햇님 (강원도 농업기술원 인삼약초시험장) ;
  • 김경희 (강원도 농업기술원 농산물이용시험장) ;
  • 김성문 (강원대학교 바이오자원환경학과)
  • Received : 2010.03.30
  • Accepted : 2010.05.17
  • Published : 2010.07.31

Abstract

The objective of this study was to isolate and identify anti-inflammatory chemicals in Hippophae rhamnoides L. which was grown in Chuncheon, Korea. Treatment of ethanol extracts from stems, leaves, roots, and fruits to RAW 264.7 cells reduced amounts of nitrite by 56.0, 31.9, 49.1, and 18.9% respectively, compared to only lipopolysaccharide (LPS) treatment which is well-known as a inflammation-inducing agent. The stems were extracted with hexane, dichloromethane, ethyl acetate, butanol, and water and their nitrite contents in RAW 264.7 cells were measured. The dichloromethane extracts showed the highest inflammatory activity, exhibiting 80% reduction of the nitrite content at 1 mg/mL treatment. Activity-directed fractionation of dichloromethane extracts led to the identification of $\beta$-sitosterol as the anti-inflammatory chemical. 0.1 mg/mL treatment of $\beta$-sitosterol inhibited strongly the production of nitrite by 65%, compared to only LPS treatment. These results suggest that stem of H. rhamnoides L. may be useful for inflammation treatment.

이번 연구는 강원도 춘천에서 재배된 비타민나무의(Hippophae rhamnoides L.) 부위별 추출물을 대상으로 항염활성 작용에 미치는 영향을 구명하였고, 이에 함유되어 있는 항염활성물질을 fraction directed isolation 방법으로 단리하였다. 항염활성 측정을 위하여 비타민나무의 줄기, 잎, 뿌리, 열매의 에탄올 추출물에 대하여 nitric oxide(NO) 생성량 측정 결과 염증 유발 물질인 lipopolysaccharide(LPS) 대비 각각 56.0, 31.9, 49.1, 18.9%의 저해 활성을 나타내었다. 비타민나무 줄기를 다시 극성을 달리하여 용매로 분획을 실시하였고 각각의 분획층에 대하여 NO 생성량 측정 결과 $CH_2Cl_2$ 분획층(1 mg/mL)에서 염증유발물질인 LPS 단독 처리군 대비 80%의 높은 항염활성을 나타내었다. 이에 항염활성이 가장 높았던 dichloromethane 분획층을 MCA-MCK까지 총 11개 분획층으로 분리하였고, 이 11개의 분획층에 대하여 NO 생성량을 측정한 결과 MCD 분획층이 0.1 mg/mL 농도에서 LPS 대비 65%의 가장 높은 항염활성을 나타내었다. MCD의 구조를 밝히기 위하여 GC/MS, $^{13}C$-NMR, $^1H$-NMR 분석을 수행한 결과, 항염활성물질 MCD는 분자량 414.71 g/mol, 화학구조식이 $C_{29}H_{50}O$$\beta$-sitosterol로 결정하였다. 향후 비타민나무 줄기는 염증예방 효능을 지닐 수 있는 기능성식품 및 의약품의 원료, 가공품 등 다양하게 활용될 수 있을 것이라 사료된다.

Keywords

References

  1. Kim HK, Na GM, Ye SH, Han HS. 2004. Extraction characteristics and anti-oxidative activity of Schiznadra chinensis extracts. Korean J Food Culture 19: 484-490.
  2. Kim SA, Oh SI, Lee MS. 2007. Antioxidative and cytotoxic effects of solvent fractions from Elaeagnus multiflora. J Korean Soc Food Sci Nutr 20: 134-142.
  3. Lee SJ, Lee IS, Mar W. 2003. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,5-penta-o-galloyl-$\beta$-d-glucose in murine macrophage cells. Arch Pharm Res 26: 832-839. https://doi.org/10.1007/BF02980029
  4. Talhouk RS, Karam C, Fostok S, El-Jouni W, Barbour EK. 2007. Anti-inflammatory bioactivities in plant extracts. J Med Food 10: 1-10. https://doi.org/10.1089/jmf.2005.055
  5. Yoon WJ, Lee JA, Kim KN, Kim JY, Park SY. 2007. In vitro anti-inflammatory activity of the Artemisia fukudo extracts in murine macrophage RAW 264.7 cells. Korean J Food Sci Technol 39: 464-469.
  6. Fenton MJ, Golenbock DT. 1998. LPS-binding proteins and receptors. J Leuko Biol 64: 25-32.
  7. Glauser MP. 1996. The inflammatory cytokines. New developments in the pathophysiology and treatment of septic shock. Drugs 52: 9-17.
  8. Rousi A. 1977. The genus Hippophae L. a taxonomic study. Ann Bot Fennici 8: 177-227.
  9. Kato K, Kanayama Y, Ohkawa W. 2007. Nitrogen fixation in Seabuckthorn (Hippophae rhamnoides L.) root nodules and effect of nitrate on nitrogenase activity. J Japan Soc Hort Sci 76: 185-190. https://doi.org/10.2503/jjshs.76.185
  10. Kim KM, Park MH, Kim KH, Lim SH, Park YH, Kim YN. 2009. Analysis of chemical composition and in vitro antioxidant properties of extracts from SeaBuckthorn (Hippophae rhamnoides L.). J Kor Soc Appl Biol Chem 52: 58-64. https://doi.org/10.3839/jksabc.2009.010
  11. Chauhan AS, Negi PS, Ramteke RS. 2007. Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides L.) seeds. Fitoterapia 78: 590-592. https://doi.org/10.1016/j.fitote.2007.06.004
  12. Padwad Y, Ganju L, Jain M. 2006. Effect of leaf extract of Seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int Immunopharmacol 6: 46-52. https://doi.org/10.1016/j.intimp.2005.07.015
  13. Chen Y, Jiang Z, Qin W, Ni M, Li X, He Y. 1990. Chemical composition and characteristics of Seabuckthorn fruit and its oil. Chem Industry Forest Prod 10: 163-175.
  14. Yang B, Heikki K, Raija T. 1999. Effects of dietary supplementation of Seabuckthorn (Hippophae rhamnoides L.) oils on fatty acids in patients with atopic dermatitis. J Nutr Biochem 10: 622-630. https://doi.org/10.1016/S0955-2863(99)00049-2
  15. Tiffany TYG, Stefan C, Arnie H. 2005. Effect of drying on the nutraceutical quality of Seabuckthorn (Hippophae rhamnoides L. ssp. sinensis) leaves. J Food Sci 70: 514-518.
  16. Jeong JH, Lee CO, Lee JW, Choi EY, Kim JH, Han SN, Yu CY, Kim MJ. 2008. Biological activities of extract and fractions from Hippophae rhamnoides L. root and stem. Korean J Medicinal Crop Sci 16(suppl I): 240-241.
  17. Han SN, Lee JW, Jeong JH, Lee CO, Kim JK, Yu CY, Kim MJ. 2007. Alcohol dehydrogenase activities from Hippophae rhamnoides L. stem. Korean J Medicinal Crop Sci 15 (suppl I): 197-198.
  18. Upadhyay NK, Kumar R, Mandotra SK. 2009. Safety and healing efficacy of Seabuckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem Toxicol 47: 1146-1153. https://doi.org/10.1016/j.fct.2009.02.002
  19. Ganju L, Padwad Y, Singh R. 2005. Anti-inflammatory activity of Seabuckthorn (Hippophae rhamnoides) leaves. Int Immunopharmacol 5: 1675-1684. https://doi.org/10.1016/j.intimp.2005.03.017
  20. Yang ZG, Li HR, Wang LY, Li YH, Lu SG, Wen XF, Wang J, Daikonya A, Kitankak S. 2007. Triterpenoids from Hippophae rhamnoides L. and their nitric oxide productioninhibitory and DPPH radical-scavenging activities. Chem Pharm Bull 55: 15-18. https://doi.org/10.1248/cpb.55.15
  21. Kim HY, Choi HJ, Lim SH, Heo SJ, Han SS, Kim DS, Hwang KH, Kim S. 2003. Herbicidal activity of Korean native plants (I). Kor J Pest Sci 7: 248-257.
  22. Kim NK, Kim MH, Yoon CS, Choi SW. 2006. Studies on the anti-inflammatory activity of Paulownia coreana Uyeki leaf extract. J Soc Cosmetic Sci Kor 32: 241-247.
  23. Duerksen-Hughes PJ, Day D, Laster SMA, Zacharidaes NA, Aquino L, Gooding LR. 1992. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J Immunol 149: 2114-2122.
  24. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064.
  25. Moghaddam FM, Farimani MM, Salahvarzi S, Amin G. 2006. Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. eCAM 26: 1-4.
  26. Yu YP, Kang SS, Kim CM. 1990. A study on the chemical constituents of Tilia koreana Nakai. Kor J Pharmacogn 21: 265-269.
  27. Kahn MMAA, Jain DC, Bhakuni RS, Mohd Z, Thakur RS. 1991. Occurrence of some antiviral sterols in Artemisia annua. Plant Sci 75: 161-165. https://doi.org/10.1016/0168-9452(91)90230-6
  28. Gupta MB, Nath R, Srivastava N, Shanker K, Kishor K, Bhargava KP. 1980. Anti-inflammatory and antipyretic activities of $\beta$-sitosterol. Planta Med 39: 157. https://doi.org/10.1055/s-2008-1074919

Cited by

  1. Anti-Inflammatory Effects of Xanthoceras sorbifolia Seeds Oil on RAW264.7 Macrophages and TPA-Induced Ear Edema Mice vol.29, pp.4, 2013, https://doi.org/10.7747/JFS.2013.29.4.324
  2. Biological Activity of Dandelion (Taraxacum officinale) extracts Fermented with Raw Sugar vol.44, pp.5, 2012, https://doi.org/10.9721/KJFST.2012.44.5.607
  3. Biological Activities of Extracts from Flowers of Angelica gigas Nakai vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1079
  4. Biological Activities of Solvent Extracts from Leaves of Aceriphyllum rossii vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1739
  5. Nutritional Components and Antioxidant Activities of Sea Buckthron (Hippophae rhamnoides L.) Leaf and Berry Extracts vol.28, pp.1, 2010, https://doi.org/10.17495/easdl.2018.2.28.1.31
  6. Effects of Plug Cell Trays, Soil and Shading Rates on Seed Germination and Seedling Growth Characteristics of Hippophae rhamnoides L. vol.36, pp.1, 2010, https://doi.org/10.7747/jfes.2020.36.1.55